

Boosting Semantic Segmentation

of Historical Maps with Self-

Supervised Vision Transformers

Author: Shupeng Wang

 shupwang@student.ethz.ch

Professorship: Prof. Dr. Lorenz Hurni

 LHurni@ethz.ch

Supervisor: Xue Xia Chenjing Jiao

 xiaxue@ethz.ch cjiao@ethz.ch

Submission Date: 16.06.2023

Project 2

Spring Semester 2023

Geomatics Master

Abstract

Historical maps have long been valuable resources due to the rich amount of

information they offer about the built environment and landscapes in the past. And to

enjoy the benefits brought by the rich information, efficient ways to extract

information from the maps are required. Current mainstream methods originate from

the field of computer vision and use techniques such as Convolutional Neural

Networks (CNNs) to achieve classification or semantic segmentation with relatively

high accuracy. In the meantime, the growing popularity of the transformers and new

self-supervised methods such as contrastive learning seem to point out a new direction

to go. This project combines a Swin Transformer based model with contrastive

learning aiming to boost the performance of semantic segmentation of historical maps

and achieve more efficient information extraction from historical maps. The highlight

of the project lies in the following perspectives: a) historical map data preprocessing

b) pretraining of the backbone with contrastive learning using multi-temporal large-

scale unlabeled historical map data c) finetuning of the segmentation head with the

small-scale labeled dataset.

Table of Contents

1. Introduction ... 1

1.1. Background and motivation .. 1

1.2. Objective .. 1

2. Related work ... 2

2.1. Self-supervised learning ... 2

2.2. Vision Transformers ... 3

2.3. Semantic segmentation ... 3

3. Methodology ... 3

3.1. Data ... 3

3.2. Model .. 7

3.3. Procedure ... 12

3.4. Tools ... 16

4. Result .. 17

4.1. Loss change ... 17

4.2. Semantic segmentation of map sheets ... 19

4.3. Semantic segmentation of map tiles .. 20

4.4. Quantitative evaluation ... 24

5. Discussion .. 25

5.1. Interpretation of results .. 25

5.2. Limitations .. 26

6. Conclusion and outlook .. 27

6.1. Overall conclusion ... 27

6.2. Outlook .. 28

6.3. Achievement of objectives .. 28

Table of Figures
Figure 1: Data preprocessing workflow (pretraining data) ... 5

Figure 2: Data preprocessing workflow (finetuning data) .. 6

Figure 3: Network architecture for the Swin Transformer based backbone 8

Figure 4: Comparison between the self-supervised pretraining and SimCLR framework 9

Figure 5: Network architecture for the segmentation head ... 11

Figure 6: Pretraining workflow ... 13

Figure 7: Finetuning workflow .. 14

Figure 8: Testing workflow .. 15

Figure 9: Loss (pretraining) .. 17

Figure 10: Loss (finetuning) ... 18

Figure 11: Sample map sheet ... 19

Figure 12: Semantic segmentation of the sample map sheet (SwinUNet SSL) 19

Figure 13: Semantic segmentation of the sample map sheet (UNet) .. 20

Figure 14: Semantic segmentation of the normal map tile .. 21

Figure 15: Semantic segmentation of the boundary map tile ... 22

Figure 16: Semantic segmentation of the road map tile ... 23

Figure 17: Quantitative evaluation of the model performance ... 24

1

1. Introduction

1.1. Background and motivation

Historical maps have long been valuable sources of information in the past where they

provide references ranging from the natural environment (natural features and

topography) to the built environment (buildings and infrastructures). Yet, it was always

difficult to extract useful information from these maps due to the great amount of expert

knowledge and effort required during the early times. The quick development of deep

learning techniques in the field of computer vision such as Convolutional Neural

Networks (CNN), however, has been a game changer and brought the use of historical

maps to a new dimension. They have significantly reduced the complexity and

difficulty to extract information from these maps, as well as achieved relatively high

accuracy in tasks such as classification and semantic segmentation.

In recent years, two new emerging techniques have once again revolutionized the field

of computer vision and raised the efficiency and accuracy of downstream tasks to a new

height. One of them is self-supervised learning (SSL) which explores the inherent

structure of non-labeled data to create labels, and based on these generated labels, tries

to learn the useful feature representations. The other one is the transformer-based model

that adopts the mechanism of attention instead of convolution to promote the learning

of the feature representation. While these techniques have been widely applied in

computer vision, there’s still limited application in the field of historical maps. Would

they bring a thorough change to the field just like CNNs did before? How to incorporate

these new techniques to the field of historical maps in order to achieve better

performance in downstream tasks? All these questions remain open and will form a key

focus of this project.

1.2. Objective

The main objective of this project is to explore whether the involvement of self-

supervised learning and the transformer-based model can help boost the performance

of semantic segmentation, specifically for railway features in historical maps. The focus

is given to contrastive learning and the Swin Transformer. The detailed implementation

can be summarized as a primary goal and two secondary goals.

1.2.1. Primary goal

The primary goal is to automize the map data preprocessing flow, incorporate

contrastive learning into the Swin Transformer framework, and create a full workflow

to conduct the semantic segmentation of railway features in historical maps. The main

goal covers the basic requirements that a deep learning task should generally fulfill:

automatic data preprocessing flow and a runnable model.

2

1.2.2. Secondary goals

The secondary goals are divided into the following two sessions:

a) Contrastive learning

Explore whether the overall performance of semantic segmentation of railways can be

improved by involving additional pretraining of the backbone of the model using

contrastive learning and a large unlabeled historical map dataset.

b) Swin Transformer

Explore whether the overall performance of semantic segmentation of railways can be

improved by incorporating the Swin Transformer based backbone and decoder

compared to the traditional UNet model with ResNet backbone.

2. Related work

2.1. Self-supervised learning

Self-supervised learning (SSL) is a machine learning technique that exploits the

inherent information present in the unlabeled data to provide supervision signals for

learning feature representations. Most SSL methods choose one of two popular

approaches: conducting pretext tasks or utilizing contrastive learning.

For pretext-based methods, different tasks such as context prediction (Doersch et al.,

2015), Jigsaw solving (Noroozi & Favaro, 2016), colorization of grey-scale images

(Zhang et al., 2016), and cluster prediction (Caron et al., 2020) have been developed.

For contrastive learning based methods, many frameworks have been proposed. The

two most popular frameworks are MoCo (He et al., 2019) and SimCLR (T. Chen,

Kornblith, Norouzi, et al., 2020). MoCo builds up on the early InstDisc model (Wu et

al., 2018) and summarizes contrastive learning as a dictionary look-up task. The idea

of queue and momentum encoder helps to build up a large and consistent dictionary on-

the-fly that facilitates contrastive learning. SimCLR, on the other hand, chooses a

simple structure that uses data augmentation to generate positive pairs. The model can

be easily set up with an encoder and a fully connected layer. Learning from the strength

of each other, MoCov2 (X. Chen et al., 2020) and SimCLRv2 (T. Chen, Kornblith,

Swersky, et al., 2020) come out and lead another wave of contrastive learning.

Interestingly, contrastive learning can also be conducted without negative samples

while still avoiding model collapse. BOYL (Grill et al., 2020) introduces a predictor

and converts the former maximizing agreement problem to a prediction problem where

mean squared loss can be used. To reduce the overall complexity of the model picked

in this project, SimCLR, as a simple contrastive learning framework, is picked and used

for pretraining.

3

2.2. Vision Transformers

The success of Transformers in the field of natural language processing has sparked

interest in applying the same technique in the field of computer vision. Following the

trend comes out the Vision Transformer (ViT) (Dosovitskiy et al., 2020). In contrast to

CNNs, ViT uses self-attention instead of convolution so that both local and global

contextual information can be captured together during the training process. At the

same time, ViT is also facing problems such as difficulty in capturing information of

entities with different scales, and the requirement of large amount of computation

power. To resolve these issues, Swin Transformer is developed by combining a shift-

window strategy from CNNs with Transformers (Liu et al., 2021) It divides the image

into non-overlapping windows and performs self-attention within each window to

improve computational efficiency. The hierarchical structure ensures information from

multi-scale can be captured properly. Due to its brilliant performance in various tasks,

Swin Transformer is used as the backbone in this project.

2.3. Semantic segmentation

Semantic segmentation is one of the most fundamental downstream tasks in the field of

computer vision with the objective to achieve pixel-wise classification for given images.

There are many sophisticated CNNs such as UNet (Ronneberger et al., 2015) and FCN

(Long et al., 2014) available. Among them, UNet, with its simplicity and robustness

has received a lot of attention. One way to improve the performance of the UNet is to

replace its encoder with more robust backbones. Attempts have been made by replacing

it with ResNet (Diakogiannis et al., 2019), Swin Transformer (Cao et al., 2021), and

many other encoders. This project utilizes these improved versions of UNet and

combines them with self-supervised learning to help boost the performance in semantic

segmentation.

3. Methodology

3.1. Data

3.1.1. Data overview

The data used in this project mainly involve four parts: Siegfried Map data, Old

National Map data, railway data for the Siegfried Map, and road data for the Siegfried

Map. All the data are provided exclusively by the Chair of Cartography, Institute of

Cartography and Geoinformation at ETH Zurich.

3.1.1.1. Siegfried Map data

The Siegfried Map is a series of topographic maps of Switzerland that was created

between 1870 and 1926 and continued getting updated until 1949 (Swisstopo, 2023b).

The series consists of several thousand sheets providing coverage of the whole country.

The map sheets contain a wide range of information, including relief, waterways,

4

forests, settlements, and transportation networks such as roads, railways, and telegraph

lines. In this project, digital versions of Siegfried Map sheets (dimension: 7000*4800*3)

are used. The map series is divided into three subsets according to the period: 1880s,

1890s, and 1940s. Sheets from the 1940s are used in the pretraining of the encoder and

sheets from the other two time periods are for the finetuning of the segmentation head.

3.1.1.2. Old National Map data

The Old National Map is another series of maps of Switzerland that superseded the

earlier Siegfried Map starting in the 1930s (Swisstopo, 2023a). Just like the Siegfried

Map series, the Old National Map series provides coverage of the whole country as well

as information about natural features, human settlements, and transportation networks.

Within the scope of the project, digital versions of Old National Map sheets dating back

to the 1950s (dimension: 14000*9600*3) are used for the pretraining of the encoder.

3.1.1.3. Railway data for the Siegfried Map

Digitized railway data from Siegfried Map sheets dating back to the 1880s and 1890s

are utilized. This data is available in vector format as polylines and consists of three

categories of railways: normal railway, narrow railway, and tunnel railway. The railway

features are used as references to extract small railway tiles from the Siegfried Map

sheets and generate corresponding labels. The generated small tiles and labels are

mainly for the finetuning of the segmentation head.

3.1.1.4. Road data for the Siegfried Map

In order to enhance the model’s ability to distinguish railways from roads, additional

road data is incorporated into the training process. This dataset consists of digitized

road data for four selected Siegfried Map sheets. The road data is available in vector

format, specifically as points that either fall directly on the road network or within a

certain distance of it. The road networks are used to extract road tiles from Siegfried

map sheets. These road tiles, along with the corresponding labels generated from the

road data, are utilized for the finetuning of the segmentation head.

3.1.2. Data preprocessing

Data preprocessing is divided into two parts which correspond to the model structure

mentioned later in section 3.2: preprocessing for pretraining data and preprocessing for

finetuning data.

5

3.1.2.1. Preprocessing for pretraining data

Figure 1: Data preprocessing workflow (pretraining data)

The whole procedure for preprocessing pretraining data is summarized in Figure 1. The

input data are Siegfried Map sheets from the 1940s, and Old National Map sheets from

the 1950s. For each Siegfried Map sheet, 700 random points are generated within its

extent, resulting in a total of 240,800 points. These points are then used to crop both

Siegfried and Old National Map sheets, creating the same number of small map tiles

with a dimension 224*224*3.

6

3.1.2.2. Preprocessing for finetuning data

Figure 2: Data preprocessing workflow (finetuning data)

The preprocessing procedure for finetuning data is depicted in Figure 2. For railway

data, the preprocessing involves the following steps:

1. Railway Data Sampling: The railway data is sampled as points, ensuring that the

distance between consecutive sample points on the same railway is 200 meters.

This sampling process generates a total of 25,945 points.

2. Map Sheet Cropping: The sampled railway points are used to crop Siegfried Map

sheets from the 1940s and Old National Map sheets from the 1950s. These

cropped map sheets result in the creation of the same number of small map tiles

that contain railway features.

3. Label Generation: Corresponding labels are generated for each railway tile based

on the railway data. The labels are stored as RGB images, where the red channel

represents narrow railway labels, the green channel represents normal railways,

and the blue channel represents tunnel railways. The value of 1 for a pixel in a

given channel means that it belongs to the railway class represented by the

channel while 0 means it doesn’t.

4. Data split: the railway tiles and corresponding labels are divided into training,

validation, and testing sets in an 8:1:1 ratio.

A similar procedure to the railway data is applied to the road data (sampling is

unnecessary in this case since road data is already point data). The road data is also

sampled as points, and the resulting points are used to generate road tiles and labels.

In total, 4,557 road tiles and labels are generated and they are split into three sets in an

8:1:1 ratio

7

Dataset
Training Validation Testing

Railway Road Total Railway Road Total Railway Road Total

Complete 20756 3645 24401 2594 455 3049

2595 457 3052

Partial (10%) 2075 364 2439 259 45 304

Partial (5%) 1037 182 1219 129 22 151

Partial (2.5%) 518 91 609 64 11 75

Partial (1%) 207 36 243 25 4 29

Table 1: Overview of finetuning dataset

Additionally, small finetuning datasets are prepared by taking 10%, 5%, 2.5%, and 1%

of the railway and road data generated in the previous steps. Table 1 shows the detailed

number of tiles in each dataset. To have a fair evaluation of the model performance,

models trained and validated with different datasets are all tested on the testing set for

the complete dataset.

3.2. Model

The model proposed in this project is inspired by the SwinUNet SSL model developed

by Scheibenreif et al. (2022). The overall structure follows a UNet setting which is an

encoder-decoder structure with skip connections. The main blocks, however, are

replaced by Swin Transformer blocks instead of typical convolutional layers. In

addition, the encoder is first pretrained through contrastive learning, then connect with

the decoder to conduct semantics segmentation. The model performance is compared

with a baseline model that follows the UNet structure but with a Resnet backbone.

3.2.1. SwinUNet SSL

The SwinUNet SSL model can be divided into three parts: Swin Transformer based

backbone, self-supervised pretraining, and finetuning. The details for each part are

covered in the following sections.

3.2.1.1. Swin Tranformer based backbone

The Swin Transformer plays a vital role in this project as the model backbone for

extracting meaningful features from original historical maps. It is a general-purpose

backbone designed to tackle various vision tasks, including image classification,

semantic segmentation, and object detection. The Swin Transformer offers two

significant advantages. First, it excels at capturing features at multiple scales. By

creating hierarchical feature maps starting from small-scale patches and progressively

merging adjacent patches, the Swin Transformer achieves an expanded receptive field

and a better understanding of features on a larger scale. Another notable advantage of

the Swin Transformer is its computational efficiency. The shifted window partitioning

technique allows for the computation of self-attention locally, reducing the

computational complexity to a linear scale relative to the image size. This efficiency is

achieved while still maintaining the crucial interaction between windows in the

preceding layers, ensuring comprehensive feature representation (Liu et al., 2021).

8

Figure 3: Network architecture for the Swin Transformer based backbone

The backbone of the model consists of several crucial components as indicated in

Figure 3: patch embedding, Swin Transformer blocks, and patch merging. These

components work together to process the input tiles and extract meaningful features.

The overall backbone architecture follows the structure of the tiny version of the Swin

9

Transformer (Swin-T), where Swin Transformer blocks are divided into four groups

and repeated 2, 2, 6, and 2 times within each group.

The first component, path embedding, combines patch partitioning and linear

embedding. The input tiles are divided into small patches with dimensions of 56*56*48.

These patches are then reprojected to a suitable dimension of 56*56*96, which serves

as the input for the Swin Transformer. This patch embedding process is accomplished

through a single convolutional layer.

The Swin Transformer blocks form the core of the backbone. Each block comprises

four components: two layer norm modules (LN), a multi-head self-attention module

with either regular windowing configuration (W-MSA) or shifted windowing

configuration (SW-MSA), and a two-layer multilayer perceptron (MLP). To achieve

global perception, one Swin Transformer block with W-MSA is always followed by

another block with SW-MSA. Importantly, the Swin Transformer blocks maintain the

input and output dimensions.

Patch merging, similar to downsampling, reduces the height and width of the input

patch by half while doubling its channel dimension. This process helps to capture

hierarchical features.

3.2.1.2. Self-supervised pretraining

The use of the contrastive SSL for the pretraining of the Swin Transformer based

backbone is also proposed in the project. There are many contrastive learning

frameworks available, and the framework picked up is a modified version of SimCLR

(Figure 4).

Figure 4: Comparison between the self-supervised pretraining and SimCLR

framework

SimCLR adopts the typical idea of contrastive learning by maximizing the agreement

10

between positive pairs while minimizing negative pairs. It obtains positive pairs Xi and

Xj through data augmentation such as image transformation, color jittering, etc. Two

augmented views of the input data are generated, then each of them enters an encoder

that has shared weights for feature extraction. A further projection is conducted for

extracted features hi and hj and the InfoNCE loss is calculated between results zi and zj

to maximize the agreement and update the corresponding weights (T. Chen, Kornblith,

Norouzi, et al., 2020).

The modified version of SimCLR in the SwinUNet SSL inherits the idea of the classical

SimCLR. The encoder used is the backbone described in section 3.2.1.1, and the

projection is achieved by two consecutive fully connected (FC) layers. Two highlights

that differentiate it from the classical version are:

1. Data argumentation free: Instead of using data augmentation, tiles from

Siegfried Map and Old National Map are directly considered positive pairs. The

Old National Map provides roughly the same coverage of the area as the

Siegfried Map, despite being created in different years. By selecting the closest

possible time frames for the two map series, the dissimilarity of features

between the maps can be minimized. In addition to the style differences

between the map series, the symbology used in the maps is also different. This

difference in symbology can potentially force the model to learn some

fundamental representations for specific features such as railways, buildings,

or roads.

2. Non-shared weights: The encoder for Siegfried map tiles and the encoder for

Old National map tiles are only the same in the structure but not for the weights.

The aim of the pretraining in this project is not to train a backbone that can

learn a general representation of map features but to better learn the

representation for a specific map series. Therefore, each encoder will have a

different group of weights that is tailored toward the specific map set.

3.2.1.3. Finetuning

The finetuning, as the main part of the model, follows the SwinUNet architecture. The

encoder is the Swin Transformer based backbone mentioned in section 3.2.1.1. After

pretraining, meaningful representations will be extracted from Siegfried Map tiles and

then used as the input for the segmentation head. The whole finetuning procedure is

summarized in Figure 5.

11

Figure 5: Network architecture for the segmentation head

The segmentation head consists of four components: path expanding, Swin Transformer

blocks, skip connection, and a fully connected layer. These components work together

to convert the extracted feature into semantic segmentation of railway features. As a

part of the SwinUNet, the segmentation also follows the Swin-T structure.

The first component, path expanding, is a reverse operation of the patch merging that

conducts upsampling tasks. For each patch expanding, it doubles the height and the

width of the input feature while reducing the channel by half. The last patch expanding

is a little bit special as it quadruples the height and the width instead of doubling.

12

The Swin Transformer blocks are the same as those in the backbone. Yet, an additional

step of skip connection is applied after the Swin Transformer blocks. Shallow features

from the backbone are concatenated with deep features in the segmentation head that

owns the same dimension to reduce the loss of spatial information caused during the

patch merging. To keep the dimension of the concatenated feature the same as the

upsampled feature, an additional fully connected layer is applied.

After four patch expanding blocks, the feature now has the same height and width as

the input map tile. A final fully connected layer is applied to bring the number of

channels to the number of railway classes. In the case of this project, there are three

railway classes.

The finetuning process is supervised learning where labels are provided. The binary

cross entropy loss (BCE loss) is calculated between each label and the corresponding

result of semantic segmentation, and the weights are updated accordingly. One

noticeable point is that the weights for the backbone are not frozen, and they can also

be updated during the finetuning process.

3.2.2. UNet

The baseline model chosen in this project is the mainstream model: UNet. One issue

with classical UNet is that it lacks pretrained weights on large datasets such as

ImageNet for its encoder. In addition, it fails to reach roughly the same level of model

complexity as the SwinUNet SSL. To ensure a fair comparison between the SwinUNet

SSL and the baseline model, the UNet is modified accordingly. The encoder is replaced

by the ResNet50 which has sophisticated pretrained weights on large datasets as well

as similar complexity as Swin-T (Liu et al., 2021).

3.3. Procedure

The whole procedure can be summarized into pretraining, finetuning, and testing.

Before starting any of the above steps, both Old National Map and Siegfried Map sheets

have to go through the data preprocessing procedure to get transformed into small tiles

with dimensions of 224*224*3 to match the input format of the model.

13

3.3.1. Pretraining

Figure 6: Pretraining workflow

Figure 6 shows that 240,800 Siegfried Map tiles and the same number of Old National

Map tiles are used as the input for the pretraining. The tiles go through the backbone

and fully connected layers, and the InfoNCE loss is calculated between the generated

features. The weights for both the backbone and fully connected layers will be updated

accordingly, but only the weights for the backbone will be passed to further steps.

For training parameters, the batch size is set to 96 meaning that 95*2 negative examples

will be available per positive pair within a batch. The learning rate is set to be constant

at 10-4 and the scheduler is a cosine scheduler that starts to work after 30 epochs. To

ensure a good start, the pretrained weights for Swin-T are loaded (Liu Z et al., 2023).

14

3.3.2. Finetuning

Figure 7: Finetuning workflow

For finetuning, the prepared complete or partial finetuning datasets are utilized.

Siegfried tiles will go through the backbone and the segmentation head to generate the

semantic segmentation of railway features, and the BCE loss is calculated between the

generated features and given labels. The weights for both the backbone and

segmentation head will be updated.

For finetuning parameters, the batch size is 48. The learning rate is set to be constant at

10-4 and the scheduler starts to work after 50 epochs with a decay rate of 10-3.

Experiments are conducted on all five datasets using two different approaches: fine-

tuning with pretrained weights for the backbone and training from scratch.

15

3.3.3. Testing

Figure 8: Testing workflow

In the testing phase, the trained model is evaluated on two different levels: map tiles

and map sheets. For map tiles, a total of 3052 testing tiles are used to assess the

performance of the model. The evaluation focuses on each railway class individually,

and a confusion matrix is created to analyze the model’s predictions. The confusion

matrix includes metrics such as true positive, false positive, true negative, and false

negative rates indicating whether a certain type of railway is correctly classified at the

pixel level. In addition to the confusion matrix, several evaluation metrics are also

calculated. These include accuracy which measures the overall correctness of the

model’s predictions, F1 score, which considers both precision and recall, and

Intersection over Union (IoU), which evaluates the overlap between the predicted and

ground truth regions.

For map sheets, the predictions generated by the model are primarily used for

visualization purposes. They showcase how the model’s capabilities can be applied in

real-world applications, where the entire map sheets are processed to highlight the

presence and locations of different railway classes.

16

3.4. Tools

Deep learning tasks are inherently complex and involve a wide range of preparation

including data processing, model building, to evaluation. Making informed decisions

regarding the tools such as programming language, deep learning framework, and

hardware can significantly accelerate the process while ensuring good quality,

transferability, and reproducibility.

3.4.1. Hardware

Computers with GPU installed:

Tasks related to deep learning generally require a computer with decent computing

power in order to deal with the large amount of data during the training, validation,

and testing process. Especially for image data, GPUs with high memory are preferred.

Regarding the model training in this project, the pretraining task, due to the large

amount of data required, is conducted in a computer with NVIDIA TESLA V100-

PCIE which has 32 GB RAM. All other tasks including finetuning and testing are

performed in a computer installed with NVIDIA RTX A4000 GPU that has 16 GB

RAM.

3.4.2. Software

The Software used in the project mainly involves two parts: a) QGIS which is mainly

used as a data viewer or to perform simple subset tasks, b) Python which is the major

programming language for all data preprocessing, model building and testing, and

result evaluation.

a) QGIS:

QGIS is an open-source GIS platform that allows easy working with geospatial data.

The platform not only supports numerous formats of data including vector, raster, and

image but also provides a great variety of functions for geoprocessing and spatial

analysis. In the scope of this project, QGIS is mainly used to select the road data for

finetuning. Also, it serves as a data viewer to visualize the railway and road data and to

locate the generated tiles.

b) Python:

Python has long been a popular programming language for data science and machine

learning. There are plenty of well-developed packages such as Numpy and Pandas

which allow easy data reading and processing, OpenCV and Pillow that deal with image

processing and computer vision, and PyTorch and TensorFlow that offer machine

learning frameworks.

Among all libraries utilized in this project, PyTorch is one of the most important

libraries. PyTorch significantly simplifies deep learning workflow by decomposing it

17

into multiple components such as datasets, dataloaders, and neural network modules.

Built-in transformations, optimizers, schedulers, and loss functions are also provided

eliminating the need for manual implementation (PyTorch Foundation, 2023). The

whole model in this project is built on the PyTorch framework, and the features

mentioned above have greatly accelerated both model building and the training process.

4. Result

4.1. Loss change

Figure 9: Loss (pretraining)

In the pretraining phase, both the training loss and validation loss exhibit a rapid drop

in the initial epochs, as shown in Figure 9. After around epoch 50, the drop speed of the

loss starts to slow down, yet it’s worth noticing that the trend of decreasing loss

continues even up to epoch 400.

18

Figure 10: Loss (finetuning)

For SwinUNet SSL, the weights trained for 400 epochs during the pretraining is loaded

into the backbone. The SwinUNet-based models consistently exhibit similar

performances in terms of both training loss and validation loss. During the initial epochs

of training, losses tend to decrease rapidly. As training progresses, the loss values reach

a plateau or show only a gradual decrease. The size of the finetuning dataset also has

an impact on the starting point and the rate of decrease in the loss values. When a larger

finetuning dataset is used, the model starts with a lower initial loss and the drop speed

of the loss is generally faster.

The UNet model shows similar behavior in terms of the starting point and rate of

decrease in the loss as the SwinUNet-based models. However, one notable difference

is that the final loss values for different finetuning datasets are not at the same level. In

general, larger datasets tend to lead to lower final loss values. Another observation is

the presence of abnormal peaks in the plot of validation loss. But the loss usually

recovers quickly and continues to decrease as the training progresses

19

4.2. Semantic segmentation of map sheets

Figure 11: Sample map sheet

Figure 12: Semantic segmentation of the sample map sheet (SwinUNet SSL)

20

Figure 13: Semantic segmentation of the sample map sheet (UNet)

Figure 12 and 13 show the semantic segmentation results obtained by applying the

SwinUNet SSL and UNet models to the map sheet in Figure 11. Just like the labels

generated before, the color channels in the segmented images correspond to specific

railway categories: the red channel represents narrow railways, the green channel

represents normal railways, and the blue channel represents tunnel railways.

The results obtained by the SwinUNet SSL model demonstrate its capability to capture

a greater number of railway features within the designated area as well as to maintain

the continuity property of railway networks. However, it is worth noting that the

resulting features exhibit a lack of smoothness and contain a significant amount of noise,

particularly in mountainous regions where contour lines are prevalent.

In contrast, the results produced by the UNet model depict fewer railway features as

well as less noise. Nevertheless, the identified features demonstrate a smoother

appearance, presenting a cleaner representation of the railway network though more

fragmented.

4.3. Semantic segmentation of map tiles

For semantic segmentation of map tiles, SwinUNet SSL, SwinUNet (SwinUNet SLL

without pretrain), and the UNet model trained on different finetuning datasets are

applied to the test sets. The semantic segmentation or normal railways are visualized in

the following sections.

21

Figure 14: Semantic segmentation of the normal map tile

For a common map tile, both SwinUNet SSL and UNet model generate results that

visually resemble the ground truth regardless of the size of the dataset they use during

the finetuning (some misclassification occurs in the 1% set for the UNet model). For

SwinUNet, the performance quickly diminishes as the size of the finetuning dataset

becomes smaller. The problem of rough features still exists in SwinUNet-based models,

while for the UNet, the results are generally nice and clean.

22

Figure 15: Semantic segmentation of the boundary map tile

For a selected map tile that is close to the boundary, the situation is different. SwinUNet

SSL continues to perform well in all five scenarios, though features remain rough. For

UNet, the railway pixels are well predicted, however, some uncommon

misclassifications occur for pixels outside the boundary when using small finetuning

datasets. For SwinUNet, only starting from the 5% partial dataset that the model begins

to perform meaningful semantic segmentation. Yet, there exist some kind of boundary

effects where it’s still possible to identify the rough location of the boundary of the

features in the input map tile.

23

Figure 16: Semantic segmentation of the road map tile

For a selected map tile that contains road features, SwinUNet-based models only show

an average level of performance. The misclassification occurs especially in areas where

contour lines are close to the road networks. Interestingly, increasing the size of the

finetuning dataset does not yield significant improvements in performance. For UNet,

while misclassification still occurs when only small finetuning datasets are used, the

general performance is brilliant.

24

4.4. Quantitative evaluation

Figure 17: Quantitative evaluation of the model performance

In general, the UNet model outperforms the SwinUNet-based models, as evidenced by

higher F1 scores and Intersection over Union (IoU) values across all datasets. All three

models still follow the general rule that the model performance tends to improve with

the availability of more training data, with the exception of the SwinUNet SSL model

trained with the complete dataset. The model performances for other railway classes

are not evaluated since the UNet trained with the complete dataset is the only model

that is capable to identify some pixels from those classes.

25

5. Discussion

5.1. Interpretation of results

a) Loss change

The pretraining part behaves like most deep learning models where the loss drops

quickly in the beginning and slows down over time. The decreasing trend indicates that

continue training might be beneficial as long as the validation loss is not increasing.

For the finetuning part, the convergence of losses for SwinUNet-based models shows

the signal of stable performance.

b) Semantic segmentation of map sheets

While the SwinUNet SSL model may introduce noise in the final result of semantic

segmentation, it exhibits the ability to capture and represent continuous railway features

within a given map sheet. This characteristic allows for a quick understanding of the

location and extent of railway networks. On the other hand, the UNet model produces

segmentation results that are visually clean and nearly free of noise. However, it may

generate discontinuous railway features, which can present challenges when

interpreting the location of railways.

Depending on the use case of the segmentation results, one model could be favored

over the other. If the primary goal is to quickly identify the general areas where railways

are present, the SwinUNet SSL model may be preferred due to its ability to provide a

comprehensive overview of railway networks. Conversely, if the localization of

railways is crucial, then the UNet model’s cleaner segmentation results may be more

suitable.

c) Semantic segmentation of map tiles

Overall, SwinUNet SSL has a decent performance for railway segmentation though not

able to outperform UNet. By comparing with the SwinUNet, it is clear that the

pretraining weights have played a vital role in helping model learn feature

representations in a quick and accurate manner. SwinUNet SSL significantly

outperforms the non-pretrained version when both of them are finetuned with the same

dataset. The major issue with the SwinUNet SSL remains to be misclassification for

imbalanced class as well as rough segmentation results.

d) Quantitative evaluation

Although three metrics are calculated, accuracy alone may not be a reliable indicator in

this case. The presence of railway features occupies only a small proportion of pixels

in a testing tile, leading to a significant class imbalance between railway and non-

railway pixels. Consequently, accuracy can yield high scores even if the model

performs poorly on the minority railway class. In contrast, F1 score and Intersection

26

over Union (IoU) provide more comprehensive evaluations of the model’s performance.

Based on the current results, UNet remains the preferred choice for semantic

segmentation tasks involving railways, as indicated by higher F1 scores and IoU values.

However, when the training dataset is small, SwinUNet can achieve comparable

performance to UNet. It is important to note that SwinUNet exhibits a counterintuitive

behavior as the training dataset size increases. Figure 10 illustrates a small leap in the

training and validation loss, suggesting a departure from the local minimum and

convergence towards a sub-optimal minimum. The underlying cause for this behavior

is still unclear and warrants further investigation.

5.2. Limitations

Limitations in this project can be described from three perspectives:

- Data

- Model

- Evaluation

5.2.1. Data perspective

a) Data

Dissimilarity of features: While the closest possible time frames for Siegfried Map and

Old National Map series have been chosen to minimize the dissimilarity of features, the

issue is still unavoidable. The dissimilarity may originate from: 1) Development: new

buildings or infrastructures can be constructed, boundaries of the forests might change,

and the direction of the roads can be modified. 2) Map producing techniques: symbols

representing certain features or name tags of a place can be put at totally different places.

The dissimilarity in the positive pair during contrastive learning can undermine the

model’s ability to learn useful feature representations. One possible improvement is to

also introduce data augmentation so that stronger positive pairs can be acquired.

Imbalanced class: The majority of railways belong to the normal railway class which

naturally leads to a scarcity of samples from narrow or tunnel railways. It is technically

hard for a deep learning model, especially a Transformer based model to learn

meaningful features for downstream tasks if not enough data is available. Many

generative models have already shown promising results in generating new data.

Introducing them to this project can potentially solve the imbalanced class issue. Also,

switching the loss function to the focal loss or other losses that can better tackle the

imbalanced class can be another solution.

b) Data preprocessing

Due to the technical difficulty, it’s hard to generate a road tile while also ensuring no

railways are included in the same tile. Since the tile size is small, the assumption here

is that each road tile contains no railway features. The labels for road tiles are therefore

generated by directly creating a black mask. The wrong information provided by the

27

label might confuse the model during the finetuning. This issue can be relieved by

adding additional checks during the preprocessing.

5.2.2. Model perspective

a) Batch size

Batch size is a crucial factor that can affect the performance of contrastive learning as

it determines the number of negative examples included during the pretraining for each

batch. Due to the limited computing power available for the project, the batch size can

only be set to 96 which is much smaller compared to the batch size recommended by

the SimCLR framework. Given the current situation, the batch size will continue to

pose a significant challenge.

b) Training difficulty

Due to the complexity of the model, it’s extremely hard to find out appropriate

combination of learning rate, scheduler, and other model parameters. At the same time,

identifying specific parameters that lead to unsatisfactory model performance is even

more challenging. There is no quick solution to address this issue except investing more

time and making more attempts.

5.2.3. Evaluation perspective

Due to the limited amount of time available for the project, the emphasis is given to

model building, workflow development, and model testing, leading to a lack of

attention to perspectives such as quality control. Measures such as cross-validation can

be added to better evaluate the generalization ability of the model. In addition, the

random seed has been identified to influence model performance, sometimes to a non-

negligible amount. Thus, training with different random seeds and building up error

bars for quantitative metrics mentioned in section 4.4 might be helpful to improve

model reliability.

6. Conclusion and outlook

6.1. Overall conclusion

In summary, the proposed SwinUNet SSL model in this project has demonstrated

several strengths:

+ Good performance with small training dataset: The SwinUNet SSL has

exhibited comparable level of performance to mainstream models when data

availability is limited.

+ Global perception: Semantic segmentation of map sheets using SwinUNet SSL

allows for a quick identification of the location of railway features due to the

continuity of features.

+ Efficient training speed: Although not explicitly mentioned previously, the

28

model has showcased the same level of training speed as mainstream models.

+ Room for improvements: There are various tunable parameters within the model

that can be adjusted for further improvement.

However, there are also drawbacks to the model:

- Fair performance with large training dataset: The model’s performance

diminishes when trained on larger datasets.

- Difficulty in handling imbalanced training classes: The model encounters

challenges in learning meaningful features from classes such as tunnel and

narrow railways mainly due to scarcity of data.

- Steep learning curve: Due to the model complexity, prior knowledge for CNNs,

SSL, and ViT is required. Also, some additional efforts are needed to

comprehend the model structure and all available parameters.

6.2. Outlook

There are two possible future directions that the project can go:

a) Perfecting the current model

In Section 5.2, several limitations and challenges have been identified, along with

proposed solutions to address them. Moving forward, one promising direction is to

focus on implementing these proposed solutions and resolving the current issues within

the project.

b) Exploring alternative pretraining strategies

While SimCLR is a simple and straight forward self-supervised learning framework, it

requires decent amount of computational power to achieve optimal performance. There

are other SSL frameworks such as BEiT or Masked Autoencoders (MAE) that might

offer different advantages which are more suitable for Transformer-based backbones

while also being computational friendly.

6.3. Achievement of objectives

The workflow for conducting semantic segmentation with self-supervised vision

transformers has been successfully established, starting from data preprocessing, model

building, pretraining, finetuning, and concluding with model testing. This

accomplishment marks the achievement of the project’s primary objective. Furthermore,

the project has also accomplished its sub-goals, demonstrating that self-supervised

pretraining on large unlabeled datasets can effectively enhance the subsequent

performance of semantic segmentation on smaller labeled datasets. The introduction of

ViT, unfortunately, does not yield significant improvements in the performance of

semantic segmentation. Yet, there is still space for improvement as mentioned in section

5.2, and this does not imply the end of utilizing ViT in the field of historical maps. On

the contrary, it highlights the need for further exploration and investigation to optimize

29

the use of ViT for semantic segmentation tasks in this domain.

30

Reference

Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., & Wang, M. (2021). Swin-

Unet: Unet-like Pure Transformer for Medical Image Segmentation.

http://arxiv.org/abs/2105.05537

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., & Joulin, A. (2020).

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments.

http://arxiv.org/abs/2006.09882

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A Simple Framework for

Contrastive Learning of Visual Representations. http://arxiv.org/abs/2002.05709

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., & Hinton, G. (2020). Big Self-

Supervised Models are Strong Semi-Supervised Learners.

http://arxiv.org/abs/2006.10029

Chen, X., Fan, H., Girshick, R., & He, K. (2020). Improved Baselines with Momentum

Contrastive Learning. http://arxiv.org/abs/2003.04297

Diakogiannis, F. I., Waldner, F., Caccetta, P., & Wu, C. (2019). ResUNet-a: a deep

learning framework for semantic segmentation of remotely sensed data.

https://doi.org/10.1016/j.isprsjprs.2020.01.013

Doersch, C., Gupta, A., & Efros, A. A. (2015). Unsupervised Visual Representation

Learning by Context Prediction. CoRR, abs/1505.05192.

http://arxiv.org/abs/1505.05192

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,

Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N.

(2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at

Scale. http://arxiv.org/abs/2010.11929

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., Doersch,

C., Pires, B. A., Guo, Z. D., Azar, M. G., Piot, B., Kavukcuoglu, K., Munos, R., &

Valko, M. (2020). Bootstrap your own latent: A new approach to self-supervised

Learning. http://arxiv.org/abs/2006.07733

He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2019). Momentum Contrast for

Unsupervised Visual Representation Learning. http://arxiv.org/abs/1911.05722

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin

Transformer: Hierarchical Vision Transformer using Shifted Windows.

http://arxiv.org/abs/2103.14030

Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, & Guo B. (2023). Swin-T pretrained

models. https://github.com/microsoft/Swin-Transformer

Long, J., Shelhamer, E., & Darrell, T. (2014). Fully Convolutional Networks for

Semantic Segmentation. http://arxiv.org/abs/1411.4038

Noroozi, M., & Favaro, P. (2016). Unsupervised Learning of Visual Representations by

Solving Jigsaw Puzzles. CoRR, abs/1603.09246. http://arxiv.org/abs/1603.09246

PyTorch Foundation. (2023). PyTorch Tutorial. https://pytorch.org/tutorials/

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for

Biomedical Image Segmentation. http://arxiv.org/abs/1505.04597

Scheibenreif, L. M., Hanna, J., Mommert, M., & Borth, D. (2022). Self-supervised

31

Vision Transformers for Land-cover Segmentation and Classification

[Proceeding].

Swisstopo. (2023a). Background information on the National Map.

https://www.swisstopo.admin.ch/en/knowledge-facts/histcoll/historical-

maps/national-map.html

Swisstopo. (2023b). Background information on the Siegfried Map.

https://www.swisstopo.admin.ch/en/knowledge-facts/histcoll/historical-

maps/siegfried-map.html

Wu, Z., Xiong, Y., Yu, S., & Lin, D. (2018). Unsupervised Feature Learning via Non-

Parametric Instance-level Discrimination. http://arxiv.org/abs/1805.01978

Zhang, R., Isola, P., & Efros, A. A. (2016). Colorful Image Colorization.

http://arxiv.org/abs/1603.08511

