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Abstract 

Historical maps have long been valuable resources due to the rich amount of 

information they offer about the built environment and landscapes in the past. And to 

enjoy the benefits brought by the rich information, efficient ways to extract 

information from the maps are required. Current mainstream methods originate from 

the field of computer vision and use techniques such as Convolutional Neural 

Networks (CNNs) to achieve classification or semantic segmentation with relatively 

high accuracy. In the meantime, the growing popularity of the transformers and new 

self-supervised methods such as contrastive learning seem to point out a new direction 

to go. This project combines a Swin Transformer based model with contrastive 

learning aiming to boost the performance of semantic segmentation of historical maps 

and achieve more efficient information extraction from historical maps. The highlight 

of the project lies in the following perspectives: a) historical map data preprocessing 

b) pretraining of the backbone with contrastive learning using multi-temporal large-

scale unlabeled historical map data c) finetuning of the segmentation head with the 

small-scale labeled dataset. 
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1. Introduction 

1.1. Background and motivation 

Historical maps have long been valuable sources of information in the past where they 

provide references ranging from the natural environment (natural features and 

topography) to the built environment (buildings and infrastructures). Yet, it was always 

difficult to extract useful information from these maps due to the great amount of expert 

knowledge and effort required during the early times. The quick development of deep 

learning techniques in the field of computer vision such as Convolutional Neural 

Networks (CNN), however, has been a game changer and brought the use of historical 

maps to a new dimension. They have significantly reduced the complexity and 

difficulty to extract information from these maps, as well as achieved relatively high 

accuracy in tasks such as classification and semantic segmentation.  

In recent years, two new emerging techniques have once again revolutionized the field 

of computer vision and raised the efficiency and accuracy of downstream tasks to a new 

height. One of them is self-supervised learning (SSL) which explores the inherent 

structure of non-labeled data to create labels, and based on these generated labels, tries 

to learn the useful feature representations. The other one is the transformer-based model 

that adopts the mechanism of attention instead of convolution to promote the learning 

of the feature representation. While these techniques have been widely applied in 

computer vision, there’s still limited application in the field of historical maps. Would 

they bring a thorough change to the field just like CNNs did before? How to incorporate 

these new techniques to the field of historical maps in order to achieve better 

performance in downstream tasks? All these questions remain open and will form a key 

focus of this project. 

1.2. Objective 

The main objective of this project is to explore whether the involvement of self-

supervised learning and the transformer-based model can help boost the performance 

of semantic segmentation, specifically for railway features in historical maps. The focus 

is given to contrastive learning and the Swin Transformer. The detailed implementation 

can be summarized as a primary goal and two secondary goals. 

1.2.1. Primary goal 

The primary goal is to automize the map data preprocessing flow, incorporate 

contrastive learning into the Swin Transformer framework, and create a full workflow 

to conduct the semantic segmentation of railway features in historical maps. The main 

goal covers the basic requirements that a deep learning task should generally fulfill: 

automatic data preprocessing flow and a runnable model. 
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1.2.2. Secondary goals 

The secondary goals are divided into the following two sessions: 

a) Contrastive learning  

Explore whether the overall performance of semantic segmentation of railways can be 

improved by involving additional pretraining of the backbone of the model using 

contrastive learning and a large unlabeled historical map dataset.  

b) Swin Transformer  

Explore whether the overall performance of semantic segmentation of railways can be 

improved by incorporating the Swin Transformer based backbone and decoder 

compared to the traditional UNet model with ResNet backbone. 

2. Related work 

2.1. Self-supervised learning 

Self-supervised learning (SSL) is a machine learning technique that exploits the 

inherent information present in the unlabeled data to provide supervision signals for 

learning feature representations. Most SSL methods choose one of two popular 

approaches: conducting pretext tasks or utilizing contrastive learning.  

For pretext-based methods, different tasks such as context prediction (Doersch et al., 

2015), Jigsaw solving (Noroozi & Favaro, 2016), colorization of grey-scale images 

(Zhang et al., 2016), and cluster prediction (Caron et al., 2020) have been developed.  

For contrastive learning based methods, many frameworks have been proposed. The 

two most popular frameworks are MoCo (He et al., 2019) and SimCLR (T. Chen, 

Kornblith, Norouzi, et al., 2020). MoCo builds up on the early InstDisc model (Wu et 

al., 2018) and summarizes contrastive learning as a dictionary look-up task. The idea 

of queue and momentum encoder helps to build up a large and consistent dictionary on-

the-fly that facilitates contrastive learning. SimCLR, on the other hand, chooses a 

simple structure that uses data augmentation to generate positive pairs. The model can 

be easily set up with an encoder and a fully connected layer. Learning from the strength 

of each other, MoCov2 (X. Chen et al., 2020) and SimCLRv2 (T. Chen, Kornblith, 

Swersky, et al., 2020) come out and lead another wave of contrastive learning. 

Interestingly, contrastive learning can also be conducted without negative samples 

while still avoiding model collapse. BOYL (Grill et al., 2020) introduces a predictor 

and converts the former maximizing agreement problem to a prediction problem where 

mean squared loss can be used. To reduce the overall complexity of the model picked 

in this project, SimCLR, as a simple contrastive learning framework, is picked and used 

for pretraining. 



3 

 

2.2. Vision Transformers 

The success of Transformers in the field of natural language processing has sparked 

interest in applying the same technique in the field of computer vision. Following the 

trend comes out the Vision Transformer (ViT) (Dosovitskiy et al., 2020). In contrast to 

CNNs, ViT uses self-attention instead of convolution so that both local and global 

contextual information can be captured together during the training process. At the 

same time, ViT is also facing problems such as difficulty in capturing information of 

entities with different scales, and the requirement of large amount of computation 

power. To resolve these issues, Swin Transformer is developed by combining a shift-

window strategy from CNNs with Transformers (Liu et al., 2021) It divides the image 

into non-overlapping windows and performs self-attention within each window to 

improve computational efficiency. The hierarchical structure ensures information from 

multi-scale can be captured properly. Due to its brilliant performance in various tasks, 

Swin Transformer is used as the backbone in this project. 

2.3. Semantic segmentation 

Semantic segmentation is one of the most fundamental downstream tasks in the field of 

computer vision with the objective to achieve pixel-wise classification for given images. 

There are many sophisticated CNNs such as UNet (Ronneberger et al., 2015) and FCN 

(Long et al., 2014) available. Among them, UNet, with its simplicity and robustness 

has received a lot of attention. One way to improve the performance of the UNet is to 

replace its encoder with more robust backbones. Attempts have been made by replacing 

it with ResNet (Diakogiannis et al., 2019), Swin Transformer (Cao et al., 2021), and 

many other encoders. This project utilizes these improved versions of UNet and 

combines them with self-supervised learning to help boost the performance in semantic 

segmentation. 

3. Methodology 

3.1. Data 

3.1.1. Data overview 

The data used in this project mainly involve four parts: Siegfried Map data, Old 

National Map data, railway data for the Siegfried Map, and road data for the Siegfried 

Map. All the data are provided exclusively by the Chair of Cartography, Institute of 

Cartography and Geoinformation at ETH Zurich. 

3.1.1.1. Siegfried Map data 

The Siegfried Map is a series of topographic maps of Switzerland that was created 

between 1870 and 1926 and continued getting updated until 1949 (Swisstopo, 2023b). 

The series consists of several thousand sheets providing coverage of the whole country. 

The map sheets contain a wide range of information, including relief, waterways, 



4 

 

forests, settlements, and transportation networks such as roads, railways, and telegraph 

lines. In this project, digital versions of Siegfried Map sheets (dimension: 7000*4800*3) 

are used. The map series is divided into three subsets according to the period: 1880s, 

1890s, and 1940s. Sheets from the 1940s are used in the pretraining of the encoder and 

sheets from the other two time periods are for the finetuning of the segmentation head. 

3.1.1.2. Old National Map data 

The Old National Map is another series of maps of Switzerland that superseded the 

earlier Siegfried Map starting in the 1930s (Swisstopo, 2023a). Just like the Siegfried 

Map series, the Old National Map series provides coverage of the whole country as well 

as information about natural features, human settlements, and transportation networks. 

Within the scope of the project, digital versions of Old National Map sheets dating back 

to the 1950s (dimension: 14000*9600*3) are used for the pretraining of the encoder. 

3.1.1.3. Railway data for the Siegfried Map 

Digitized railway data from Siegfried Map sheets dating back to the 1880s and 1890s 

are utilized. This data is available in vector format as polylines and consists of three 

categories of railways: normal railway, narrow railway, and tunnel railway. The railway 

features are used as references to extract small railway tiles from the Siegfried Map 

sheets and generate corresponding labels. The generated small tiles and labels are 

mainly for the finetuning of the segmentation head. 

3.1.1.4. Road data for the Siegfried Map 

In order to enhance the model’s ability to distinguish railways from roads, additional 

road data is incorporated into the training process. This dataset consists of digitized 

road data for four selected Siegfried Map sheets. The road data is available in vector 

format, specifically as points that either fall directly on the road network or within a 

certain distance of it. The road networks are used to extract road tiles from Siegfried 

map sheets. These road tiles, along with the corresponding labels generated from the 

road data, are utilized for the finetuning of the segmentation head.  

3.1.2. Data preprocessing 

Data preprocessing is divided into two parts which correspond to the model structure 

mentioned later in section 3.2: preprocessing for pretraining data and preprocessing for 

finetuning data.  
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3.1.2.1. Preprocessing for pretraining data 

 

Figure 1: Data preprocessing workflow (pretraining data) 

The whole procedure for preprocessing pretraining data is summarized in Figure 1. The 

input data are Siegfried Map sheets from the 1940s, and Old National Map sheets from 

the 1950s. For each Siegfried Map sheet, 700 random points are generated within its 

extent, resulting in a total of 240,800 points. These points are then used to crop both 

Siegfried and Old National Map sheets, creating the same number of small map tiles 

with a dimension 224*224*3. 
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3.1.2.2. Preprocessing for finetuning data 

 
Figure 2: Data preprocessing workflow (finetuning data) 

The preprocessing procedure for finetuning data is depicted in Figure 2. For railway 

data, the preprocessing involves the following steps: 

1. Railway Data Sampling: The railway data is sampled as points, ensuring that the 

distance between consecutive sample points on the same railway is 200 meters. 

This sampling process generates a total of 25,945 points. 

2. Map Sheet Cropping: The sampled railway points are used to crop Siegfried Map 

sheets from the 1940s and Old National Map sheets from the 1950s. These 

cropped map sheets result in the creation of the same number of small map tiles 

that contain railway features. 

3. Label Generation: Corresponding labels are generated for each railway tile based 

on the railway data. The labels are stored as RGB images, where the red channel 

represents narrow railway labels, the green channel represents normal railways, 

and the blue channel represents tunnel railways. The value of 1 for a pixel in a 

given channel means that it belongs to the railway class represented by the 

channel while 0 means it doesn’t.  

4. Data split: the railway tiles and corresponding labels are divided into training, 

validation, and testing sets in an 8:1:1 ratio. 

A similar procedure to the railway data is applied to the road data (sampling is 

unnecessary in this case since road data is already point data). The road data is also 

sampled as points, and the resulting points are used to generate road tiles and labels. 

In total, 4,557 road tiles and labels are generated and they are split into three sets in an 

8:1:1 ratio 

 



7 

 

Dataset 
Training Validation Testing 

Railway Road Total Railway Road Total Railway Road Total 

Complete 20756 3645 24401 2594 455 3049 

2595 457 3052 

Partial (10%) 2075 364 2439 259 45 304 

Partial (5%) 1037 182 1219 129 22 151 

Partial (2.5%) 518 91 609 64 11 75 

Partial (1%) 207 36 243 25 4 29 

Table 1: Overview of finetuning dataset 

Additionally, small finetuning datasets are prepared by taking 10%, 5%, 2.5%, and 1% 

of the railway and road data generated in the previous steps. Table 1 shows the detailed 

number of tiles in each dataset. To have a fair evaluation of the model performance, 

models trained and validated with different datasets are all tested on the testing set for 

the complete dataset. 

3.2. Model 

The model proposed in this project is inspired by the SwinUNet SSL model developed 

by Scheibenreif et al. (2022). The overall structure follows a UNet setting which is an 

encoder-decoder structure with skip connections. The main blocks, however, are 

replaced by Swin Transformer blocks instead of typical convolutional layers. In 

addition, the encoder is first pretrained through contrastive learning, then connect with 

the decoder to conduct semantics segmentation. The model performance is compared 

with a baseline model that follows the UNet structure but with a Resnet backbone. 

3.2.1. SwinUNet SSL 

The SwinUNet SSL model can be divided into three parts: Swin Transformer based 

backbone, self-supervised pretraining, and finetuning. The details for each part are 

covered in the following sections. 

3.2.1.1. Swin Tranformer based backbone 

The Swin Transformer plays a vital role in this project as the model backbone for 

extracting meaningful features from original historical maps. It is a general-purpose 

backbone designed to tackle various vision tasks, including image classification, 

semantic segmentation, and object detection. The Swin Transformer offers two 

significant advantages. First, it excels at capturing features at multiple scales. By 

creating hierarchical feature maps starting from small-scale patches and progressively 

merging adjacent patches, the Swin Transformer achieves an expanded receptive field 

and a better understanding of features on a larger scale. Another notable advantage of 

the Swin Transformer is its computational efficiency. The shifted window partitioning 

technique allows for the computation of self-attention locally, reducing the 

computational complexity to a linear scale relative to the image size. This efficiency is 

achieved while still maintaining the crucial interaction between windows in the 

preceding layers, ensuring comprehensive feature representation (Liu et al., 2021). 
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Figure 3: Network architecture for the Swin Transformer based backbone 

The backbone of the model consists of several crucial components as indicated in 

Figure 3: patch embedding, Swin Transformer blocks, and patch merging. These 

components work together to process the input tiles and extract meaningful features. 

The overall backbone architecture follows the structure of the tiny version of the Swin 
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Transformer (Swin-T), where Swin Transformer blocks are divided into four groups 

and repeated 2, 2, 6, and 2 times within each group. 

The first component, path embedding, combines patch partitioning and linear 

embedding. The input tiles are divided into small patches with dimensions of 56*56*48. 

These patches are then reprojected to a suitable dimension of 56*56*96, which serves 

as the input for the Swin Transformer. This patch embedding process is accomplished 

through a single convolutional layer. 

The Swin Transformer blocks form the core of the backbone. Each block comprises 

four components: two layer norm modules (LN), a multi-head self-attention module 

with either regular windowing configuration (W-MSA) or shifted windowing 

configuration (SW-MSA), and a two-layer multilayer perceptron (MLP). To achieve 

global perception, one Swin Transformer block with W-MSA is always followed by 

another block with SW-MSA. Importantly, the Swin Transformer blocks maintain the 

input and output dimensions. 

Patch merging, similar to downsampling, reduces the height and width of the input 

patch by half while doubling its channel dimension. This process helps to capture 

hierarchical features.  

3.2.1.2. Self-supervised pretraining 

The use of the contrastive SSL for the pretraining of the Swin Transformer based 

backbone is also proposed in the project. There are many contrastive learning 

frameworks available, and the framework picked up is a modified version of SimCLR 

(Figure 4). 

 

Figure 4: Comparison between the self-supervised pretraining and SimCLR 

framework 

SimCLR adopts the typical idea of contrastive learning by maximizing the agreement 
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between positive pairs while minimizing negative pairs. It obtains positive pairs Xi and 

Xj through data augmentation such as image transformation, color jittering, etc. Two 

augmented views of the input data are generated, then each of them enters an encoder 

that has shared weights for feature extraction. A further projection is conducted for 

extracted features hi and hj and the InfoNCE loss is calculated between results zi and zj 

to maximize the agreement and update the corresponding weights (T. Chen, Kornblith, 

Norouzi, et al., 2020). 

The modified version of SimCLR in the SwinUNet SSL inherits the idea of the classical 

SimCLR. The encoder used is the backbone described in section 3.2.1.1, and the 

projection is achieved by two consecutive fully connected (FC) layers. Two highlights 

that differentiate it from the classical version are: 

1. Data argumentation free: Instead of using data augmentation, tiles from 

Siegfried Map and Old National Map are directly considered positive pairs. The 

Old National Map provides roughly the same coverage of the area as the 

Siegfried Map, despite being created in different years. By selecting the closest 

possible time frames for the two map series, the dissimilarity of features 

between the maps can be minimized. In addition to the style differences 

between the map series, the symbology used in the maps is also different. This 

difference in symbology can potentially force the model to learn some 

fundamental representations for specific features such as railways, buildings, 

or roads.  

2. Non-shared weights: The encoder for Siegfried map tiles and the encoder for 

Old National map tiles are only the same in the structure but not for the weights. 

The aim of the pretraining in this project is not to train a backbone that can 

learn a general representation of map features but to better learn the 

representation for a specific map series. Therefore, each encoder will have a 

different group of weights that is tailored toward the specific map set.  

3.2.1.3. Finetuning 

The finetuning, as the main part of the model, follows the SwinUNet architecture. The 

encoder is the Swin Transformer based backbone mentioned in section 3.2.1.1. After 

pretraining, meaningful representations will be extracted from Siegfried Map tiles and 

then used as the input for the segmentation head. The whole finetuning procedure is 

summarized in Figure 5. 
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Figure 5: Network architecture for the segmentation head 

The segmentation head consists of four components: path expanding, Swin Transformer 

blocks, skip connection, and a fully connected layer. These components work together 

to convert the extracted feature into semantic segmentation of railway features. As a 

part of the SwinUNet, the segmentation also follows the Swin-T structure. 

The first component, path expanding, is a reverse operation of the patch merging that 

conducts upsampling tasks. For each patch expanding, it doubles the height and the 

width of the input feature while reducing the channel by half. The last patch expanding 

is a little bit special as it quadruples the height and the width instead of doubling. 
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The Swin Transformer blocks are the same as those in the backbone. Yet, an additional 

step of skip connection is applied after the Swin Transformer blocks. Shallow features 

from the backbone are concatenated with deep features in the segmentation head that 

owns the same dimension to reduce the loss of spatial information caused during the 

patch merging. To keep the dimension of the concatenated feature the same as the 

upsampled feature, an additional fully connected layer is applied. 

After four patch expanding blocks, the feature now has the same height and width as 

the input map tile. A final fully connected layer is applied to bring the number of 

channels to the number of railway classes. In the case of this project, there are three 

railway classes. 

The finetuning process is supervised learning where labels are provided. The binary 

cross entropy loss (BCE loss) is calculated between each label and the corresponding 

result of semantic segmentation, and the weights are updated accordingly. One 

noticeable point is that the weights for the backbone are not frozen, and they can also 

be updated during the finetuning process. 

3.2.2. UNet 

The baseline model chosen in this project is the mainstream model: UNet. One issue 

with classical UNet is that it lacks pretrained weights on large datasets such as 

ImageNet for its encoder. In addition, it fails to reach roughly the same level of model 

complexity as the SwinUNet SSL. To ensure a fair comparison between the SwinUNet 

SSL and the baseline model, the UNet is modified accordingly. The encoder is replaced 

by the ResNet50 which has sophisticated pretrained weights on large datasets as well 

as similar complexity as Swin-T (Liu et al., 2021). 

3.3. Procedure 

The whole procedure can be summarized into pretraining, finetuning, and testing. 

Before starting any of the above steps, both Old National Map and Siegfried Map sheets 

have to go through the data preprocessing procedure to get transformed into small tiles 

with dimensions of 224*224*3 to match the input format of the model. 
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3.3.1. Pretraining 

 

Figure 6: Pretraining workflow 

Figure 6 shows that 240,800 Siegfried Map tiles and the same number of Old National 

Map tiles are used as the input for the pretraining. The tiles go through the backbone 

and fully connected layers, and the InfoNCE loss is calculated between the generated 

features. The weights for both the backbone and fully connected layers will be updated 

accordingly, but only the weights for the backbone will be passed to further steps. 

For training parameters, the batch size is set to 96 meaning that 95*2 negative examples 

will be available per positive pair within a batch. The learning rate is set to be constant 

at 10-4 and the scheduler is a cosine scheduler that starts to work after 30 epochs. To 

ensure a good start, the pretrained weights for Swin-T are loaded (Liu Z et al., 2023). 
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3.3.2. Finetuning 

 

Figure 7: Finetuning workflow 

For finetuning, the prepared complete or partial finetuning datasets are utilized. 

Siegfried tiles will go through the backbone and the segmentation head to generate the 

semantic segmentation of railway features, and the BCE loss is calculated between the 

generated features and given labels. The weights for both the backbone and 

segmentation head will be updated.  

For finetuning parameters, the batch size is 48. The learning rate is set to be constant at 

10-4 and the scheduler starts to work after 50 epochs with a decay rate of 10-3. 

Experiments are conducted on all five datasets using two different approaches: fine-

tuning with pretrained weights for the backbone and training from scratch. 
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3.3.3. Testing 

 

Figure 8: Testing workflow 

In the testing phase, the trained model is evaluated on two different levels: map tiles 

and map sheets. For map tiles, a total of 3052 testing tiles are used to assess the 

performance of the model. The evaluation focuses on each railway class individually, 

and a confusion matrix is created to analyze the model’s predictions. The confusion 

matrix includes metrics such as true positive, false positive, true negative, and false 

negative rates indicating whether a certain type of railway is correctly classified at the 

pixel level. In addition to the confusion matrix, several evaluation metrics are also 

calculated. These include accuracy which measures the overall correctness of the 

model’s predictions, F1 score, which considers both precision and recall, and 

Intersection over Union (IoU), which evaluates the overlap between the predicted and 

ground truth regions.  

For map sheets, the predictions generated by the model are primarily used for 

visualization purposes. They showcase how the model’s capabilities can be applied in 

real-world applications, where the entire map sheets are processed to highlight the 

presence and locations of different railway classes. 
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3.4. Tools 

Deep learning tasks are inherently complex and involve a wide range of preparation 

including data processing, model building, to evaluation. Making informed decisions 

regarding the tools such as programming language, deep learning framework, and 

hardware can significantly accelerate the process while ensuring good quality, 

transferability, and reproducibility. 

3.4.1. Hardware 

Computers with GPU installed: 

Tasks related to deep learning generally require a computer with decent computing 

power in order to deal with the large amount of data during the training, validation, 

and testing process. Especially for image data, GPUs with high memory are preferred. 

Regarding the model training in this project, the pretraining task, due to the large 

amount of data required, is conducted in a computer with NVIDIA TESLA V100-

PCIE which has 32 GB RAM. All other tasks including finetuning and testing are 

performed in a computer installed with NVIDIA RTX A4000 GPU that has 16 GB 

RAM. 

3.4.2. Software 

The Software used in the project mainly involves two parts: a) QGIS which is mainly 

used as a data viewer or to perform simple subset tasks, b) Python which is the major 

programming language for all data preprocessing, model building and testing, and 

result evaluation. 

a) QGIS: 

QGIS is an open-source GIS platform that allows easy working with geospatial data. 

The platform not only supports numerous formats of data including vector, raster, and 

image but also provides a great variety of functions for geoprocessing and spatial 

analysis. In the scope of this project, QGIS is mainly used to select the road data for 

finetuning. Also, it serves as a data viewer to visualize the railway and road data and to 

locate the generated tiles. 

b) Python: 

Python has long been a popular programming language for data science and machine 

learning. There are plenty of well-developed packages such as Numpy and Pandas 

which allow easy data reading and processing, OpenCV and Pillow that deal with image 

processing and computer vision, and PyTorch and TensorFlow that offer machine 

learning frameworks.  

Among all libraries utilized in this project, PyTorch is one of the most important 

libraries. PyTorch significantly simplifies deep learning workflow by decomposing it 
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into multiple components such as datasets, dataloaders, and neural network modules. 

Built-in transformations, optimizers, schedulers, and loss functions are also provided 

eliminating the need for manual implementation (PyTorch Foundation, 2023). The 

whole model in this project is built on the PyTorch framework, and the features 

mentioned above have greatly accelerated both model building and the training process. 

 

4. Result 

4.1. Loss change 

 
Figure 9: Loss (pretraining) 

In the pretraining phase, both the training loss and validation loss exhibit a rapid drop 

in the initial epochs, as shown in Figure 9. After around epoch 50, the drop speed of the 

loss starts to slow down, yet it’s worth noticing that the trend of decreasing loss 

continues even up to epoch 400. 
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Figure 10: Loss (finetuning) 

For SwinUNet SSL, the weights trained for 400 epochs during the pretraining is loaded 

into the backbone. The SwinUNet-based models consistently exhibit similar 

performances in terms of both training loss and validation loss. During the initial epochs 

of training, losses tend to decrease rapidly. As training progresses, the loss values reach 

a plateau or show only a gradual decrease. The size of the finetuning dataset also has 

an impact on the starting point and the rate of decrease in the loss values. When a larger 

finetuning dataset is used, the model starts with a lower initial loss and the drop speed 

of the loss is generally faster. 

The UNet model shows similar behavior in terms of the starting point and rate of 

decrease in the loss as the SwinUNet-based models. However, one notable difference 

is that the final loss values for different finetuning datasets are not at the same level. In 

general, larger datasets tend to lead to lower final loss values. Another observation is 

the presence of abnormal peaks in the plot of validation loss. But the loss usually 

recovers quickly and continues to decrease as the training progresses 
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4.2. Semantic segmentation of map sheets 

 

Figure 11: Sample map sheet 

 

Figure 12: Semantic segmentation of the sample map sheet (SwinUNet SSL) 
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Figure 13: Semantic segmentation of the sample map sheet (UNet) 

Figure 12 and 13 show the semantic segmentation results obtained by applying the 

SwinUNet SSL and UNet models to the map sheet in Figure 11. Just like the labels 

generated before, the color channels in the segmented images correspond to specific 

railway categories: the red channel represents narrow railways, the green channel 

represents normal railways, and the blue channel represents tunnel railways.  

The results obtained by the SwinUNet SSL model demonstrate its capability to capture 

a greater number of railway features within the designated area as well as to maintain 

the continuity property of railway networks. However, it is worth noting that the 

resulting features exhibit a lack of smoothness and contain a significant amount of noise, 

particularly in mountainous regions where contour lines are prevalent. 

In contrast, the results produced by the UNet model depict fewer railway features as 

well as less noise. Nevertheless, the identified features demonstrate a smoother 

appearance, presenting a cleaner representation of the railway network though more 

fragmented. 

4.3. Semantic segmentation of map tiles 

For semantic segmentation of map tiles, SwinUNet SSL, SwinUNet (SwinUNet SLL 

without pretrain), and the UNet model trained on different finetuning datasets are 

applied to the test sets. The semantic segmentation or normal railways are visualized in 

the following sections.  
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Figure 14: Semantic segmentation of the normal map tile 

For a common map tile, both SwinUNet SSL and UNet model generate results that 

visually resemble the ground truth regardless of the size of the dataset they use during 

the finetuning (some misclassification occurs in the 1% set for the UNet model). For 

SwinUNet, the performance quickly diminishes as the size of the finetuning dataset 

becomes smaller. The problem of rough features still exists in SwinUNet-based models, 

while for the UNet, the results are generally nice and clean. 
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Figure 15: Semantic segmentation of the boundary map tile 

For a selected map tile that is close to the boundary, the situation is different. SwinUNet 

SSL continues to perform well in all five scenarios, though features remain rough. For 

UNet, the railway pixels are well predicted, however, some uncommon 

misclassifications occur for pixels outside the boundary when using small finetuning 

datasets. For SwinUNet, only starting from the 5% partial dataset that the model begins 

to perform meaningful semantic segmentation. Yet, there exist some kind of boundary 

effects where it’s still possible to identify the rough location of the boundary of the 

features in the input map tile. 
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Figure 16: Semantic segmentation of the road map tile 

For a selected map tile that contains road features, SwinUNet-based models only show 

an average level of performance. The misclassification occurs especially in areas where 

contour lines are close to the road networks. Interestingly, increasing the size of the 

finetuning dataset does not yield significant improvements in performance. For UNet, 

while misclassification still occurs when only small finetuning datasets are used, the 

general performance is brilliant. 
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4.4. Quantitative evaluation 

 

Figure 17: Quantitative evaluation of the model performance 

In general, the UNet model outperforms the SwinUNet-based models, as evidenced by 

higher F1 scores and Intersection over Union (IoU) values across all datasets. All three 

models still follow the general rule that the model performance tends to improve with 

the availability of more training data, with the exception of the SwinUNet SSL model 

trained with the complete dataset. The model performances for other railway classes 

are not evaluated since the UNet trained with the complete dataset is the only model 

that is capable to identify some pixels from those classes. 
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5. Discussion  

5.1. Interpretation of results 

a) Loss change 

The pretraining part behaves like most deep learning models where the loss drops 

quickly in the beginning and slows down over time. The decreasing trend indicates that 

continue training might be beneficial as long as the validation loss is not increasing. 

For the finetuning part, the convergence of losses for SwinUNet-based models shows 

the signal of stable performance. 

b) Semantic segmentation of map sheets 

While the SwinUNet SSL model may introduce noise in the final result of semantic 

segmentation, it exhibits the ability to capture and represent continuous railway features 

within a given map sheet. This characteristic allows for a quick understanding of the 

location and extent of railway networks. On the other hand, the UNet model produces 

segmentation results that are visually clean and nearly free of noise. However, it may 

generate discontinuous railway features, which can present challenges when 

interpreting the location of railways.  

Depending on the use case of the segmentation results, one model could be favored 

over the other. If the primary goal is to quickly identify the general areas where railways 

are present, the SwinUNet SSL model may be preferred due to its ability to provide a 

comprehensive overview of railway networks. Conversely, if the localization of 

railways is crucial, then the UNet model’s cleaner segmentation results may be more 

suitable. 

c) Semantic segmentation of map tiles 

Overall, SwinUNet SSL has a decent performance for railway segmentation though not 

able to outperform UNet. By comparing with the SwinUNet, it is clear that the 

pretraining weights have played a vital role in helping model learn feature 

representations in a quick and accurate manner. SwinUNet SSL significantly 

outperforms the non-pretrained version when both of them are finetuned with the same 

dataset. The major issue with the SwinUNet SSL remains to be misclassification for 

imbalanced class as well as rough segmentation results. 

d) Quantitative evaluation 

Although three metrics are calculated, accuracy alone may not be a reliable indicator in 

this case. The presence of railway features occupies only a small proportion of pixels 

in a testing tile, leading to a significant class imbalance between railway and non-

railway pixels. Consequently, accuracy can yield high scores even if the model 

performs poorly on the minority railway class. In contrast, F1 score and Intersection 
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over Union (IoU) provide more comprehensive evaluations of the model’s performance. 

Based on the current results, UNet remains the preferred choice for semantic 

segmentation tasks involving railways, as indicated by higher F1 scores and IoU values. 

However, when the training dataset is small, SwinUNet can achieve comparable 

performance to UNet. It is important to note that SwinUNet exhibits a counterintuitive 

behavior as the training dataset size increases. Figure 10 illustrates a small leap in the 

training and validation loss, suggesting a departure from the local minimum and 

convergence towards a sub-optimal minimum. The underlying cause for this behavior 

is still unclear and warrants further investigation. 

5.2. Limitations 

Limitations in this project can be described from three perspectives: 

- Data 

- Model 

- Evaluation 

5.2.1. Data perspective 

a) Data 

Dissimilarity of features: While the closest possible time frames for Siegfried Map and 

Old National Map series have been chosen to minimize the dissimilarity of features, the 

issue is still unavoidable. The dissimilarity may originate from: 1) Development: new 

buildings or infrastructures can be constructed, boundaries of the forests might change, 

and the direction of the roads can be modified. 2) Map producing techniques: symbols 

representing certain features or name tags of a place can be put at totally different places. 

The dissimilarity in the positive pair during contrastive learning can undermine the 

model’s ability to learn useful feature representations. One possible improvement is to 

also introduce data augmentation so that stronger positive pairs can be acquired. 

Imbalanced class: The majority of railways belong to the normal railway class which 

naturally leads to a scarcity of samples from narrow or tunnel railways. It is technically 

hard for a deep learning model, especially a Transformer based model to learn 

meaningful features for downstream tasks if not enough data is available. Many 

generative models have already shown promising results in generating new data. 

Introducing them to this project can potentially solve the imbalanced class issue. Also, 

switching the loss function to the focal loss or other losses that can better tackle the 

imbalanced class can be another solution. 

b) Data preprocessing  

Due to the technical difficulty, it’s hard to generate a road tile while also ensuring no 

railways are included in the same tile. Since the tile size is small, the assumption here 

is that each road tile contains no railway features. The labels for road tiles are therefore 

generated by directly creating a black mask. The wrong information provided by the 
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label might confuse the model during the finetuning. This issue can be relieved by 

adding additional checks during the preprocessing. 

5.2.2. Model perspective 

a) Batch size 

Batch size is a crucial factor that can affect the performance of contrastive learning as 

it determines the number of negative examples included during the pretraining for each 

batch. Due to the limited computing power available for the project, the batch size can 

only be set to 96 which is much smaller compared to the batch size recommended by 

the SimCLR framework. Given the current situation, the batch size will continue to 

pose a significant challenge. 

b) Training difficulty 

Due to the complexity of the model, it’s extremely hard to find out appropriate 

combination of learning rate, scheduler, and other model parameters. At the same time, 

identifying specific parameters that lead to unsatisfactory model performance is even 

more challenging. There is no quick solution to address this issue except investing more 

time and making more attempts.  

5.2.3. Evaluation perspective 

Due to the limited amount of time available for the project, the emphasis is given to 

model building, workflow development, and model testing, leading to a lack of 

attention to perspectives such as quality control. Measures such as cross-validation can 

be added to better evaluate the generalization ability of the model. In addition, the 

random seed has been identified to influence model performance, sometimes to a non-

negligible amount. Thus, training with different random seeds and building up error 

bars for quantitative metrics mentioned in section 4.4 might be helpful to improve 

model reliability. 

6. Conclusion and outlook 

6.1. Overall conclusion 

In summary, the proposed SwinUNet SSL model in this project has demonstrated 

several strengths: 

+ Good performance with small training dataset: The SwinUNet SSL has 

exhibited comparable level of performance to mainstream models when data 

availability is limited. 

+ Global perception: Semantic segmentation of map sheets using SwinUNet SSL 

allows for a quick identification of the location of railway features due to the 

continuity of features. 

+ Efficient training speed: Although not explicitly mentioned previously, the 
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model has showcased the same level of training speed as mainstream models.  

+ Room for improvements: There are various tunable parameters within the model 

that can be adjusted for further improvement. 

However, there are also drawbacks to the model: 

- Fair performance with large training dataset: The model’s performance 

diminishes when trained on larger datasets.  

- Difficulty in handling imbalanced training classes: The model encounters 

challenges in learning meaningful features from classes such as tunnel and 

narrow railways mainly due to scarcity of data. 

- Steep learning curve: Due to the model complexity, prior knowledge for CNNs, 

SSL, and ViT is required. Also, some additional efforts are needed to 

comprehend the model structure and all available parameters.  

6.2. Outlook 

There are two possible future directions that the project can go: 

a) Perfecting the current model 

In Section 5.2, several limitations and challenges have been identified, along with 

proposed solutions to address them. Moving forward, one promising direction is to 

focus on implementing these proposed solutions and resolving the current issues within 

the project. 

b) Exploring alternative pretraining strategies 

While SimCLR is a simple and straight forward self-supervised learning framework, it 

requires decent amount of computational power to achieve optimal performance. There 

are other SSL frameworks such as BEiT or Masked Autoencoders (MAE) that might 

offer different advantages which are more suitable for Transformer-based backbones 

while also being computational friendly. 

6.3. Achievement of objectives 

The workflow for conducting semantic segmentation with self-supervised vision 

transformers has been successfully established, starting from data preprocessing, model 

building, pretraining, finetuning, and concluding with model testing. This 

accomplishment marks the achievement of the project’s primary objective. Furthermore, 

the project has also accomplished its sub-goals, demonstrating that self-supervised 

pretraining on large unlabeled datasets can effectively enhance the subsequent 

performance of semantic segmentation on smaller labeled datasets. The introduction of 

ViT, unfortunately, does not yield significant improvements in the performance of 

semantic segmentation. Yet, there is still space for improvement as mentioned in section 

5.2, and this does not imply the end of utilizing ViT in the field of historical maps. On 

the contrary, it highlights the need for further exploration and investigation to optimize 
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the use of ViT for semantic segmentation tasks in this domain. 
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