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Abstract

This master thesis deals with the automatic classification of landscape types, such as
mountains, valleys, or hills, in an unsupervised manner based on a Digital Elevation
Model (DEM). Auto-encoder neural networks compress the original input into a fea-
ture vector representation in the encoder and recreate the input with the decoder.
In the process, the feature vector representation is trained to contain characteristic
information about the landscape terrain. Different architectures and model param-
eters are tested to optimize the feature extraction process. The features are then
used to subdivide the DEM into different landscape classes based on their common
characteristics using a clustering algorithm. The results, which are compared with
the existing Landscape Typology of Switzerland, demonstrate that auto-encoders can
be used to extract reasonable classes for the study area of Switzerland, although not
all types of manually distinguishable landscape classes can be found, and optimizing
the results is restricted by computational limitations.

Keywords: landscape classification, auto-encoders, digital elevation model, clus-
tering
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1 Introduction

In this thesis, auto-encoders are used to classify landscapes. The general idea is
to generate different classes of landscapes based on their elevation structure. For
this, digital elevation models (DEM) are used as input data. The classification is
conducted using auto-encoder neural networks. The main objective is to investigate
and employ suitable methods to train the network and obtain meaningful features,
which relate to characteristics of a given landscape. These features are then used to
segment the study area into classes of landscapes.

Auto-encoder models, that have been used in the past in various fields for classifica-
tion purposes, are adapted in this thesis to the purpose of landscape classification.
An adequate auto-encoder model should be able to extract useful features under
reasonable computation cost.

In order to obtain landscape classes, clustering algorithms are used. Landscapes
could potentially be classified based on physical, geological, hydrological, biological
or cultural characteristics. However, the scope of this thesis is restricted to landscape
classification based on physical features, which can be derived from DEMs. Potential
landscape types that could be derived from altitude information include mountains,
hills, valleys or plains. To obtain such classes, the feature space representation
should contain some characteristic features for different landscapes other than pure
altitude information.

A DEM of Switzerland will be used as input to obtain a classification of the land-
scapes of Switzerland. While there are many potential subdivisions that could be
considered reasonable, the success will be measured based on an existing manual
classification.
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2 Literature Review

Currently, no literature exists specifically on unsupervised classification of land-
scapes based on DEM using auto-encoders, however there is a wide range of litera-
ture on related topics.

Extensive research on unsupervised image classification and clustering based on
auto-encoders exists primarily on the MNIST dataset (Guo et al., 2017; Dong et al.,
2020). Semantic segmentation of large-scale images has been used for various ap-
plications such as classification of rock types (Karimpouli and Tahmasebi, 2019),
polarimetric SAR imagery (Mohammadimanesh et al., 2019), binary classification
of seamounts based on topographic features (Valentine et al., 2013) and annotation
of seafloor imagery (Yamada et al., 2021). Badrinarayanan et al. (2015) developped
an auto-encoder-based approach for pixelwise image segmentation.

Ehsani and Quiel (2009) classified landscapes using both satellite imagery and
DEMs. The feature space representation of landscape elements is also studied by re-
lating the resulting clustered classes to different attributes such as slope, maximum
and minimum curvature. Du et al. (2019) classified landforms in a supervised man-
ner by relating visual features from shaded reliefs and physical features from DEM
and slope data. Three fully connected convolutional layers and a softmax classifier
are used to predict the classes for the sample data. Using the combination of input
data, they achieved recognition accuracies of 83 % to 98 %, depending on the land-
form class, significantly higher than with only one type of input data. Similarly, Li
et al. (2020) employed a U-Net network using DEM and image data as well, achiev-
ing an accuracy of 87 %. Additionally, they showed that the CNN-based approach
outperformed an alternative random forest approach. Drăguţ and Blaschke (2006)
explored the classification of Mars landforms using geographic information systems
(GIS), object-based image analysis and digital terrain models (DTM) using a-priori
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rules bases on expert knowledge for clustering. Bue and Stepinski (2006) used the
Self-Organizing Map (SOM) neural network to find four different characteristic Mar-
tian landforms (highlands, craters, lowlands and high relief) by grouping together 20
different classes. For the input data, six different attributes including elevation and
slope derived from standard DTMs and flooded DTMs (representing enclosed de-
pressions) are used. Stepinski et al. (2006) segmented Mars landscapes using slope,
curvature and flood attributes in an unsupervised manner. In a second step, the
segments were classified in a supervised manner to match six pre-determined classes.
The most accurate learning algorithm was a Support Vector Machine (SVM), with
85 % accuracy. Other non-CNN-based methods include classification by fuzzy rules
(Drăguţ and Blaschke, 2006) or the random forest method (Zhao et al., 2017).

K-means is considered the main approach for remote sensing clustering applications
(Bue and Stepinski, 2006). Nousi and Tefas (2020) propose several adjustments to
the k-means algorithm to improve the the intra-cluster compactness and the inter-
cluster separability. Li et al. (2017) introduce a technique called Discriminatively
Boosted Clustering (DBC) to improve the separability of clusters. Gansbeke et al.
(2020) propose decoupling the process of representation learning and clustering in
a two-step approach, although there are also methods which combine the feature
learning process with a standard k-means clustering algorithm (Caron et al., 2019;
Dong et al., 2020).
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3 Method

3.1 Data

The digital elevation model (DEM) used in this thesis encompasses the entirety of
Switzerland and surroundings with a resolution of 40x40 m per pixel. The topogra-
phy of Switzerland can generally be described as consisting of three main regions.
The Mittelland (Swiss Plateau or Central Plateau) covers approximately 30 % of the
area of Switzerland. Although some parts are rather flat, the majority of its extent
is characterized by hilly landscapes. To the south, it is bordered by the Alps, which
cover about 60 % of Switzerland. This area consists of larger mountainous areas
as well as many valleys, which cut through its extent. Furthermore, a strip along
the Alps, bordering the Mittelland, is commonly referred to as the Prealps, which
is a transition zone between the mountainous areas and lower hilly areas. To the
northwest of the Mittelland lies the Jura (10 % of Switzerland), which is another
mountainous area although with lower altitudes than the Alps (EDA, 2021).

For the validation of the landscape classification, the Landschaftstypologie Schweiz
(Landscape Typology of Switzerland), developed by the Federal Office for Spatial
Development (ARE), the Federal Office for the Environment (BAFU) and the Fed-
eral Statistical Office (BFS) is used (ARE, 2021). It divides the area of Switzerland
into 38 different landform types based on topographic, geological, demographic and
ecological features.
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3.1 Data

Figure 3.1: Original Landscape typology provided by ARE, BAFU and BFS (ARE, 2021)
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3 Method

3.2 Autoencoders and Feature Extraction

Auto-encoders are a subclass of artificial neural networks (ANNs) that are different
from other types of artificial neural networks by its desire to produce an output that
is identical to the input (Valentine and Trampert, 2012). It consists of an encoder
followed by a decoder. The original data x are mapped to a latent representation h
of lower dimensionality, which can be expressed as h = fϕ(x). This process usually
includes non-linear transformations. The decoder reconstructs xr from the latent
representation, which can be expressed as xr = gθ(h) (Yamada et al., 2021). ϕ and θ

in this case are the encoder and decoder parameters. Both the encoder and decoder
may include one or several layers of neurons. The depth of a network is defined by
the number of such layers. The reconstruction xr should be as similar as possible
to the input x, given the stored information of the latent representation h. Such
an objective function can be formulated as shown in Equation 3.1, given n samples
(Yamada et al., 2021):

min
ϕ,θ

Lrec = min 1
n

n∑
i=1

||xi − xn||2 (3.1)

By downsampling the result at each layer, the next convolutional layer includes
information for each pixel from a larger context. Since the classification of a single
square in the DEM as part of a landscape requires information about a large number
of surrounding squares, it is crucial to include such steps in a network.

In order to learn meaningful features, the input data needs to be compressed, forcing
the network to keep only the most important information. Ideally, in an encoding
process, the auto-encoder finds common characteristics of the input data (Valentine
and Trampert, 2012). These common characteristics can be interpreted in this case
as characteristics of a landscape type. By minimizing the loss function according
to Equation 3.1, the network can learn weights (included in the parameters ϕ and
θ), which filter the useful information from negligible information. Those weights
are stored in weight matrices W , which exist between each pair of adjacent layers
(Valentine and Trampert, 2012) (Nousi and Tefas, 2020). Generally, the latent rep-
resentation h should be small, since relevant features can be sufficiently represented
by a feature vector of compact size and for the purpose of clustering it would be
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3.2 Autoencoders and Feature Extraction

Figure 3.2: Schematic representation of the modified SegNet architecture (Model B)

Figure 3.3: Schematic representation of the modified SegNet architecture (Model D)

7



3 Method

disadvantageous to use an unnecessarily large amount of data. Useful information
would be blurred among less useful information. At the same time, excessive com-
pression would lead to the loss of information that is necessary to reconstruct xr.
Therefore, the optimal size of the latent representation and the suitable architecture
to extract such a representation needs to be determined experimentally, as no gen-
eral rule exists for all possible datasets (Yamada et al., 2021; Mai Ngoc and Hwang,
2020).

At early stages, a basic autoencoder architecture has been tried, which did not
provide satisfactory results with regards to the reconstruction of the DEM. Yamada
et al. (2021) and Catani (2020) proposed using the AlexNet architecture for feature
learning with the purposes of annotating seafloor imagery and detecting landslides
from optical images.

The final autoencoder architecture used in this thesis, which provided the most
promising results, is the SegNet architecture, developed by Badrinarayanan et al.
(2015). It is a deep convolutional neural network architecture, based on the VGG16
network, designed for semantic pixel-wise segmentation of RGB-images. Two of the
used variations of this network are shown in Figures 3.2 and 3.3. The original Seg-
Net architecture has a symmetrical structure regarding the encoder and the decoder
networks and features 13 convolutional layers on each side. At each of the five levels
of the network, two or three convolutional layers are applied, followed by batch-
normalization, a rectified-linear unit (ReLU) and a max-pooling layer with a 2x2
window to downsample the input data by a factor of 2. The batch-normalization
layer is used to standardize the inputs, which accelerates training. The ReLU layer
introduces nonlinearity, which is necessary as during the entire convolutional pro-
cess, only linear operations such as multiplications and summations are applied.
The ReLU activation function simply changes all negative values to zero, as shown
in Equation 3.2 (Karimpouli and Tahmasebi, 2019):

f(x) = max(0, x) (3.2)

The max-pooling layer summarizes the data in the window by taking the local maxi-
mum. This process is repeated throughout the entire sample using a sliding window.
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3.2 Autoencoders and Feature Extraction

Badrinarayanan et al. (2015) have shown that the SegNet network outperforms sim-
ilar networks such as VGG16, U-net or DeconvNet regarding computing memory
consumption. The advantage comes from storing only the locations of the max-
pooling features rather than using fully connected layers. In the decoder section,
the feature maps can be upsampled again using the stored max-pooling indices.

Karimpouli and Tahmasebi (2019) have shown that extending the SegNet network
with regards to its depth is possible and necessary for more complex input data, as
doing so produced more reliable results. Therefore, the original SegNet architecture
is adapted for the purposes of this thesis by adding two additional max-pooling
levels without further convolutional layers, resulting in seven max-pooling layers
overall on the encoder side. Correspondingly, unpooling layers on the decoder side
are added as well. Using this system, an input sample with 128x128 (27x27) pixels
is downsampled to a resolution of 2x2 pixels. At this stage, the feature map has
32 channels, up from the original single-channel greyscale image. In the last step of
the encoder, the 2x2x32 feature map is flattened to a feature vector with a length
of 128, which is necessary to forward the data to the clustering algorithm.

The model is implemented using Anaconda in Python 3.6.13 with Keras 2.2.4, which
uses TensorFlow 1.15.0. All the training and testing is conducted on the GPU
(NVIDIA GeForce GTX 1080 Ti) using the CUDA Toolkit 10.0.130. For the op-
timizer, the Adam algorithm is used with the default learning rate of 0.001. For
the loss function, which quantifies the error from the predictions with regards to
the labels, a mean squared error is used. For the metrics option, accuracy is used,
which simply calculates how often the predictions equal the labels. In the training
stage, the network uses a sample of 128 images of the size 128 x 128 pixels, while
32 images of the same size are used for validation. Both sets are sampled from the
input DEM using a set of fixed numbers which are originally generated randomly
from a fixed seed to avoid bias from hand-picking samples. The model is trained
with 1000 epochs, using the same set of images. The batch size is kept at 16 samples.
Therefore, at each epoch, 8 batches of the same samples are used.

Variations of the model were tested on a study area of the size 50 km x 50 km in
eastern Switzerland. The area contains all four landscape classes as described in

9



3 Method

Figure 3.4: Original DEM of the study area

Section 3.4, which makes it a useful test site for different settings, as testing on the
complete data would be computationally expensive.

In a first step, the variations are tested with regards to their ability to reconstruct
the DEM (see Figures 3.4 and 3.5). As explained above, there is no need for a per-
fect reconstruction, however, the original structure of DEM should be recognizable.
Specifically, characteristic structures such as mountains, hills, valleys or flat plains
should be preserved. If that is not the case, the learned features do not accurately
represent the input data and therefore will not be useful for classification. In a sec-
ond step, the features are used for clustering and the results are reviewed, in order
to improve the model based on a trial-and-error approach. First, some of the basic
parameters, as shown in Table 3.1, are fixed. Afterwards, some structural settings
such as number of layers and size of the feature vector were tested. The variations,
which are used to produce the results shown in this thesis (Models A to D) are
further explained in Section 4.1.
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3.3 Clustering

Figure 3.5: Reconstructed DEM using Model B

Table 3.1: Settings for Model B

Parameter Value
Input sample size 128 x 128 px
Kernel size 3 x 3
Batch size 16
Training images 128
Validation images 32
Epochs 1000

3.3 Clustering

Clustering is a task in data analysis whereby the data are divided into a number
of groups based on common or similar features. Since the clusters do not have to
be pre-defined, it is considered a method within the field of unsupervised learning.
The advantage to classification, which is a task of supervised learning, lies within
the possibility to find similar features without the need to provide labeled training
data. Although such training data might be useful to match the resulting classes
with what we would consider reasonable landscape classes, this thesis focuses on
providing a method of unsupervised learning. Technically, by using clustering, a
segmentation technique is used in this thesis rather than classification.
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3 Method

There are generally two types of clustering algorithms, being hierarchical and par-
titional clustering. Hierarchical clustering algorithms group together data in a way
which can be represented using a dendrogram. The bottom-up (agglomerative)
approach pairs most similar features first and gradually merges all clusters. The
top-down (divisive) approach gradually divides all data points into smaller clus-
ters. Well-known hierarchical clustering algorithms are single-linkage and complete-
linkage. Partitional clustering algorithms on the other side finds all the clusters
simultaneously. K-means is generally considered the most popular partitional clus-
tering algorithm (Jain, 2010; Nousi and Tefas, 2020).

The k-means algorithm uses a pre-defined number of clusters K. It aims to partition
the N observations within a set of observations X = (x1, x2, ..., xN), with K < N ,
into a set of clusters C = (c1, c2, ..., cK) in such a way that the observations within
each cluster are as similar to each other as possible. This is done by minimizing the
variance, i.e. the squared error between the mean of data points in each cluster and
the points within the cluster. The objective function to be minimized can therefore
be written according to Equation 3.3 (Jain, 2010):

J(C) =
K∑

k=1

∑
xi∈ck

||xi − µk||2 (3.3)

The k-means algorithm follows three main steps. First, an initial partition is se-
lected, where the cluster centers can be assigned randomly. In the second step,
each data point is assigned to the closest cluster center. In the first step, the new
cluster centers are re-calculated based on the points assigned in step two. Steps two
and three are repeated until the algorithm converges, i.e. the cluster membership
remains stable (Jain, 2010). A known issue is that the k-means algorithm converges
to local minima, depending on the initial partition.

3.4 Evaluation

Since the goal is to retrieve reasonable landscape classes, the results cannot easily
be verified (Drăguţ and Blaschke, 2006). A possible method is to compare the com-
puted landscape classes with existing subdivisions based on expert knowledge. For
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3.4 Evaluation

this, the Landscape Typology of Switzerland is used, as described in Section 3.1. It
should however be noted, that the results cannot be expected to match a deliberate
classification to a large extent, as the reference classification is not used in the train-
ing process like it could have been in a supervised learning approach. Nonetheless,
a comparison could give a general idea of the performance of the model.

Since the Landscape Typology of Switzerland contains 38 different classes, partially
based on data not related to altitude, a reduced model is used for comparison pur-
poses. It contains four main classes, which could be described as Plains (A, blue),
Hills (B, purple), Lower Alps (C, green) and Higher Alps (D, turquoise), as shown
in Figure 3.6. Since the reference model only covers the area within the borders of
Switzerland, the results have also been cropped to the national border.

Additionally, the results can be evaluated visually, by draping them over the input
DEM in a GIS software and comparing the classes and their borders with the terrain
features (Drăguţ and Blaschke, 2006).

13



3 Method

Figure 3.6: Four main landscape classes generated from the Landscape Typology of
Switzerland
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4 Results

4.1 Results for Study Area

Different model settings were tested on a study area of the size 50 km x 50 km in
eastern Switzerland. The area contains all four landscape classes as described in
Section 3.4, which makes it a useful test site for different settings, as testing on the
complete data would be computationally expensive.

Figure 4.1 shows a visualization of the feature vector representations using a vari-
ation of the model described in Section 3.2, where each training image of size 128
x 128 pixels is downsampled to a single pixel using additional convolutional and
max-pooling layers (Model A). The first three out of 128 channels are coded in
RGB-colors. Figure 4.2 shows the subsequent clustering result from Model A. Al-
though the result shows that such a model could differentiate plains from mountains,
four of the shown classes should belong to the same class, reducing the number of
distinct, semantically meaningful, classes to only two.

In Figure 4.3, the number of downsampling and convolutional layers is reduced
to a model where the lowest layers contains features of size 2 x 2 x 128 (Model
B). In this model, the classes are distributed in a more useful way. The classes
could be interpreted as plains (blue), hills (purple), lower Alps (red and yellow) and
higher Alps (green). However, in some parts such as the bottom-right corner, the
classification seems to show some undesirable anomalies. If the model is trained
with 5000 instead of 1000 epochs (Model C), these anomalies disappear (see Figure
4.4), however the hills class disappears, possibly due to overfitting.

A similar result (Model D), although much blurrier, can still be achieved by drasti-
cally reducing the number of feature channels from 128 to 16 (see Figure 4.5).

15



4 Results

Figure 4.1: Visualization of the features (Model A)

Figure 4.2: Clustering results for Model A
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4.1 Results for Study Area

Figure 4.3: Clustering results for Model B

Figure 4.4: Clustering results for Model C
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4 Results

Figure 4.5: Clustering results for Model D

4.2 Results for Complete Data

Although Model B showed the most promising results, it proved to be impractical for
the complete dataset, as the 128-channel feature representation of the dataset had
a size of roughly 56 GB, which overloaded the clustering algorithm. Using Model
B, a result could therefore not be generated. Subsequently, Model D was chosen
to research if a reasonable result could be generated for the complete dataset, since
Model D only uses a feature vector of size 16 rather than 128 (see also Figures 3.2
and 3.3). As expected, reducing the input data size for the clustering algorithm con-
siderably, allowed generating a result for the complete dataset. Figure 4.6 therefore
shows the results using Model D. Initially, the clustering is conducted using K = 10
clustering classes. This allows combining similar classes to four main classes resem-
bling the modified reference classes from the Landscape Typology of Switzerland.
The shown classes are Plains (1, pink), Hills (2, yellow), Lower Alps (3, green) and
Higher Alps (4, red).

The results are then compared with the reference classes, where the corresponding
classes are Plains (A), Hills (B), Lower Alps (C) and Higher Alps (D). Table 4.1
shows the percentage of pixels for each class from Model B that lie within each class

18



4.2 Results for Complete Data

Figure 4.6: Clustering results from Model D after manually joining similar classes

of the reference classes, whereas Table 4.2 shows the comparison in the opposite
direction.

It can be seen that Class 1 lies almost completely within reference Class A, however
only two-thirds of Class A are within Class 1, indicating that Class 1 covers more
area. Indeed, approximately one third of Class 2 also lies within reference Class
A. This should not be seen as a problem since the definition of landscape classes
can be flexible. Visually, the borders of Class 1 seem to be easily justifiable. The
same also applies to Class 4. Class 2 (and to a lesser extent Class 3) is somewhat
more problematic since it covers both lower mountain ranges such as the Jura and
relatively flat Alpine valleys such as the Rhone valley, which should be found in
different classes. This is also reflected in the numeric comparison, as Class 2 is
evenly scattered through the reference classes A, B and C.

Table 4.1: Percentage of clustering classes within reference classes

Class Class A Class B Class C Class D
Class 1 89.1 % 8.5 % 1.4 % 1.0 %
Class 2 33.7 % 32.6 % 30.3 % 3.4 %
Class 3 0.2 % 0.3 % 75.3 % 24.2 %
Class 4 0.0 % 10.0 % 31.3 % 68.7 %
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4 Results

Table 4.2: Percentage of reference classes within clustering classes

Class Class 1 Class 2 Class 3 Class 4
Class A 67.8 % 32.1 % 0.1 % 0.0 %
Class B 17.2 % 82.2 % 0.6 % 0.0 %
Class C 1.0 % 26.8 % 53.4 % 18.8 %
Class D 1.1 % 4.8 % 27.6 % 66.4 %
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5 Discussion

The results for the complete dataset, using Model D show a classification that can
be considered reasonable. When combining some of the produced classes, each
of the resulting class can be given a plausible name. Still, some post-processing
is necessary to produce well-rounded classes. Additionally, it should be noted that
while the class borders do not directly correspond to contour lines, the classes are still
heavily correlated with the altitude. Figure 5.1 shows a DEM of Switzerland after
assigning four classes purely based on altitude intervals, for comparison. Finding
distinct classes with differing attributes other than altitude seems to be challenging.
With regards to that, Model B seems to show a more promising result, at least for
a smaller area. Two of the classes (blue, and purple) seem to represent areas with
relatively low slope values but different levels of altitude, while two more classes
(yellow and red) cover areas with similar altitudes as purple but with higher slope
values (see Figure 4.3).

A drawback of the k-means clustering in unsupervised methods is that the learned
clusters do not necessarily align with semantically useful classes. This is especially
the case when the class sizes are imbalanced, which is a typical problem with k-means
clustering (Gansbeke et al., 2020).

Regarding the evaluation of the results, as explained in Section 3.4, the quality
cannot easily be quantified using a reference classification, since the model is never
trained to match a specific arbitrary manual classification. However, the comparison
with the Landscape Typology of Switzerland is the only available quantitative eval-
uation metric and it can give a general idea of the ability of the model to recreate
meaningful landscape classes.
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5 Discussion

Figure 5.1: Classes purely based on altitude
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6 Conclusions and Outlook

This thesis shows that it is possible to use auto-encoders to obtain some landscape
classes from a DEM. Bue and Stepinski (2006) have already shown that it is possible
to obtain classes that are either characterized by high or low elevation, or high or low
slope, which can be confirmed in this thesis. It also shows some of the limitations
with regards to the complexity of the obtainable classes. Retrieving landscape classes
based on more sophisticated patterns remains challenging. It would be preferable
to be able to differentiate landscapes such as the Jura mountains and the Pre-Alps
based on their distinct structures and patterns. Possibly, a supervised learning
approach could help forcing the model to use other classifiers. Furthermore, adding
other types of input data not related to altitude such as aerial photographs or
vegetation data could be helpful.

A possible improvement to the overall workflow lies in applying a method where the
two main steps considered in this thesis, the feature learning and clustering steps, are
jointly executed so that the loss function could include the clustering performance,
as proposed by Li et al. (2018) or Yamada et al. (2021). Additionally, the k-means
algorithm could be extended using the proposals by Nousi and Tefas (2020) or other
types of clustering algorithms could be used such as the SCAN-algorithm proposed
by Gansbeke et al. (2020), or Principal Component Analysis (PCA).

This thesis also outlines the tensions that arise between the necessity of using deeper
and more complex models to obtain better results and the challenges that lies within
the large amount of data to process. The results showed that reducing the model
complexity may be necessary but could limit the classification performance. It was
not possible to use the preferred model for the entire dataset. As a consequence,
better results were produced for a smaller study area. Potentially, this issue could
be addressed in the future by using input data with a smaller resolution or using
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6 Conclusions and Outlook

a more computationally efficient clustering algorithm. However it remains unclear,
if using the preferred model would substantially improve the result for the entire
dataset. Additionally, using input data with lower resolution would lose data which
could be significant to characterize complex landscape types.
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