
Institute of Cartography
and Geoinformation

Service-Driven 3D Atlas Cartography
Master Thesis, Spring Term 2012
Geomatics and Planning Msc

Institute of Cartography and Geoinformation
Department of Civil, Environmental and Geomatic Engineering | ETH Zürich

Author Nadia Panchaud
 nadiap@student.ethz.ch

Supervising Turors Dr. Ionut Iosifescu-Enescu
 Dr. René Sieber

Supervisor Prof. Dr. Lorenz Hurni

July 2, 2012

Acknowledgement

This Master thesis has been realized at the Institute for Cartography and Geoinformation at ETH
Zürich in the framework of my Master studies in Geomatics and Planning. It has given me the chance
to deepen my knowledge about the stimulating and fast-evolving field of online cartography and its
application to atlases. I have been able to immerse myself in the new challenges brought by the
digital technologies to the atlas field. I have especially enjoyed exploring the world of 3D visualization
and the incredible perspectives it offers, not only for atlases, but also for any types of geovisualization.
I would like to thank Dr. Ionut Iosifescu-Enescu for helping me defining the topic of my Master thesis,
as well as for his unreserved support during this thesis. I could always count on his knowledge and
competences to steer me in the right direction when I found myself in front of an obstacle. My thanks
also go to Dr. René Sieber for his help regarding online digital atlases and to Remo Eichenberger for
the captivating discussions about the Globe Capture Service and issues with 3D visualization as well
as for his technical support.
I also thank my friends, Elisabeth and Olga, that had the patience and willingness to read and correct
my report.
Finally, I would like to thank my family for their unconditional support during my studies in Zürich. In
particular to my dad who is always there for me (and my computer) and to my mom who is always
there to cheer me up.

Acknowledgement I

Nadia Panchaud

Abstract

This Master thesis deals with the new and exciting field of 3D atlas cartography. Its goal is to assess
the state of 3D geovisualization and to implement a prototype demonstrating that a service-oriented
architecture for 3D atlas is possible. The literature review shows that 3D geovisualization has certain
advantages over 2D geovisualization regarding shape understanding and orientation tasks. From the
specifications and web services review, it is clear that the area of 3D visualization is growing rapidly
and that standards for 3D web services are demanded to put some order in the profusion of formats
and implementations, that are not compatible withe each other.
The prototype uses a combination of a 3D web service, Globe Capture Service, which is based on
osgEarth, and a Web Map Service, QGIS Server to display a panorama view of the landscape. The Web
Map Service is used as a texture. The prototype also implements block diagrams using WebGL and a
Web Map Service for the texture. The limitations of WMS for 3D geovisualization appears when
dealing with point symbology, but using a Web Map Service is still a valid choice as a texture for the
landscape with both the Globe Capture Service and WebGL. The Globe Capture Service still
encounters performance and interoperability issues, especially due to the lack of standards, but
otherwise shows promises for a 3D web atlases. WebGL, though, has two major weaknesses that
could hinder its use for a full-fledge 3D web atlas: the size limitation and the absence of full support
by most of the browsers.
The prototype implementation shows that service-driven 3D atlas are doable and that the use of a
Web Map Service is suitable for the texture of topographic and choropleth maps. Further, the
prototype and the literature come to the conclusion that standards for 3D web services are needed in
order to allows for a full and interoperable service-oriented architecture. Regarding the 3D symbols
and point symbology, that cannot be properly handle by a Web Map Service, it is therefore advice to
use billboards which are requested through a 3D/2D symbols web service. There is also still need for
research for the most effective display for 3D atlas, being in the form of panorama view, block
diagram or virtual globe.

Abstract III

Nadia Panchaud

Table of Content

Preface I

Abstract III

Registers IX
Figures IX

Tables X

Code Extracts X

Abbreviations XI

1. Introduction 1

1.1. Introduction and Problem Statement 1

1.2. Motivation 1

1.3. Goals 2

1.4. Structure of the Report 2

2. Methodology 3

2.1. Method 3
2.1.1. Analysis 3
2.1.2. Implementation 3
2.1.3. Discussion of Results 3

2.2. Data 3

2.3. Infrastructure 4

3. Literature Review 5

3.1. Atlases and 3D Visualization 5
3.1.1. Atlas Definition 5
3.1.2. Advantages and Challenges of 3D Visualization 6

3.2. Atlas Functions 7
3.2.1. Functions of Interactive Atlases 7
3.2.2. Functions Specific to 3D Atlas 8

4. Technology Review 9

4.1. Existing Online 3D Atlases and 3D Visualization Products 9
4.1.1. 3D Atlases and 3D Viewers of Geoportals 9
4.1.2. Virtual Globe 12
4.1.3. GIS-based Viewers 14

4.2. 3D Technologies Review 15
4.2.1. Graphic Formats 15
4.2.2. 3D Viewers 17

Table of Content V

Nadia Panchaud

4.3. Web Services 17
4.3.1. Web Map Service (WMS) 18
4.3.2. Web Terrain Server (WTS) 18
4.3.3. Web Perspective View Service (WPVS) 18
4.3.4. Web Perspective View Service++ (WPVS++) 18
4.3.5. Web View Service (WVS) 18
4.3.6. Web 3D Service (W3DS) 19

4.4. Architectures 19

5. Requirements for Service-driven 3D Atlases 23

5.1. System Requirements 24

5.2. Visualization Requirements 24

5.3. Interactivity Requirements 25

6. Implementation 27

6.1. Architecture 27
6.1.1. Data Tier 27
6.1.2. Web Service Tier 29
6.1.3. User Interface Tier 30

6.2. High-level Workflow 31
6.2.1. The Panorama View 31
6.2.2. The Block Diagram 31

6.3. Presentation of the Prototype 32
6.3.1. General Description 32
6.3.2. Symbolization with WMS 35
6.3.3. Technical Aspects 35

7. Discussion of Results 37

7.1. Overview 37

7.2. Advantages and Weaknesses of the Used 3D Technologies 37
7.2.1. Combination of Globe Capture Service and QGIS Server 37
7.2.2. Combination of WebGL and QGIS Server 40
7.2.3. Summary 42

7.3. Recommendations for the Architecture 43

8. Conclusions and Outlook 45

8.1. Conclusions 45

8.2. Outlook 45

Bibliographic References 47

Appendices 51
I. Illustrations of the Prototype 51

II. Panorama View Integration (getGlobeCapture.js) 58

VI Service-driven 3D Atlas Cartography

III. Block Diagram Integration (getBlockDiagram.js) 63

IV. Extract of the WebGL Integration (webGL.js) 66

V. Integration of WMS in the Globe Capture Request 68

VI. Examples of WMS Request for the Block Diagram 70

VII. Vertex and Fragment Shaders Integration 71

VIII. Functions of Existing 3D Digital Atlases 72

IX. Requirements Overview 73

Declaration of Originality 74

Table of Content VII

Nadia Panchaud

Registers

Figures
Figure 1: The three core concepts 1

Figure 2: Block diagram and virtual globe from the Swiss World Atlas interactive 9

Figure 3: Viewer of the Géoportail. Relief view with the layers roads, orographic names, national maps
(transparent) and aerial image 10

Figure 4: Corresponding views in 2D and 3D of the GeoPortal Bund 11

Figure 5: 2D Viewer of the IDEE 11

Figure 6: Panorama view and block image in the Atlas of Switzerland 3 12

Figure 7: Zoom in on Switzerland on the virtual globe of NASA World Wind (module WMS), with the
isoline of the magnet field strengths from the WMS of the Swiss government 13

Figure 8: Close zoom in on the demo version of the OpenWebGlobe 14

Figure 9: Web service concept 17

Figure 10: 3D Visualization Pipeline according to the OGC 19

Figure 11: Balancing schemes between portrayal servers and clients according to the OGC 20

Figure 12: First family of architectures, using plugins to display the data in the browser 21

Figure 13: Architecture of a service-oriented subsystem 21

Figure 14: Architecture of the WTS, as realized by the open source system Deegree 22

Figure 15: Requirements for service-driven 3D atlases in their fields of influence 23

Figure 16: Architecture of the prototype 27

Figure 17: Parameters of the Globe Capture Service request 29

Figure 18: Flow of information for the panorama view mode 31

Figure 19: Flow of information for the block diagram mode 32

Figure 20: WebGL rendering pipeline 32

Figure 21: The three modes of the prototype. Top: 2D maps, left: panorama view, right: block diagram 33

Figure 22: Design of the GUI for the panorama view mode and its navigational functions 34

Figure 23: Design of the GUI for the block diagram mode and its navigational functions 34

Figure 24: Panorama view, left: bas map, right: geology map 38

Figure 25: Panorama view, top: population density (choropleth) and number of inhabitants
(sphere), left: diagram for boat types, right: airport symbol and labels on the base map 39

Figure 26: Block diagrams, left: base map, right: population density and inhabitants 41

Figure 27: 3D symbolization of the buildings in Andermatt with WebGL 41

Figure 28: Billboards - possible solution for 2D and 3D symbols with the web service approach 43

Registers IX

Nadia Panchaud

Tables
Table 1: Characteristics of Virtual Globes and possible import formats 15

Table 2: List of layers used for the prototype and their name in the PostgreSQL database 28

Table 3: Extensions to the GUI, functions and description 36

Table 4: Assessment of the different requirements for 3D geovisualization systems 42

Code Extracts
Code Extract 1: iFrame and canvas elements 31

Code Extract 2: Example for the symbolization of alluvial deposits (Alluvionen) with SLD 35

X Service-driven 3D Atlas Cartography

Abbreviations

AdS Atlas der Schweiz, Atlas of Switzerland
API Application Programing Interface
CityGML City Geography Markup Language
DEM Digital Elevation Model, DHM
DHM Digitales Höhenmodell, DEM
DOM Document Object Model
GCS Globe Capture Service
GML Geography Markup Language
GPB GeoPortal Bund, Germany
GPF Géoportail, France
GPU Graphics Processing Unit
GUI Graphic User Interface
IDEE Infraestructura de Datos Espaciales de España
KML Keyhole Markup Language
OGC OpenGIS Consortium, Inc.
OpenGL Open Graphics Library
QGIS Quantum GIS, open source software for geographic information system
SLD Styled Layer Descriptor
SOA Service-Oriented Architecture
SVG Scalable Vector Graphic
SWAi Schweizer Weltatlas interaktiv, Swiss World Atlas interactive
VRML Virtual Reality Modeling Language
X3D Extensible 3D Graphics
X3DOM X3D + DOM
XML Extensible Markup Language
W3C World Wide Web Consortium
W3DS Web 3D Service
WebGL Web Graphics Library
WMS Web Map Service
WPVS Web Perspective View Service
WTS Web Terrain Service
WVS Web View Service

Abbreviations XI

Nadia Panchaud

1. Introduction

1.1. Introduction and Problem Statement
We live in a world where visual transmission of information have a prominent role and where
computers and information technologies are always more powerful, thus allowing 3D visualization
and display to become more present in our daily life. Indeed, we now have 3D movie theaters, 3D TVs,
and 3D game consoles. 3D technologies and portrayal techniques are now available not only to the
experts, but also to the general public, and, for instance, for 3D atlases and virtual globes as well. And
our knowledge is getting online, including such spatial knowledge and thus we need solutions for 3D
geovisualization online.
Atlases are powerful tools to display, explore and share geospatial information. From the classical and
static paper atlases, the technologies have allowed to move to more dynamic ways of displaying
geospatial data on computers and to publish them through the World Wide Web. It allows the users
to access and interact with geospatial information like never before, but from the paper copy to the
3D fully interactive web atlas, there is still a long way to go. For several geospatial tasks, 3D
visualizations of landscape and other geospatial information might be more intuitive and easier to
understand for the non-expert users as they are closer to how people see their world (Bleisch and
Dykes, 2006; Meng, 2003; Rase, 2003; St. John et al., 2001). Additionally, delivering them over the
internet enables a greater number of users to access and explore geospatial information, including
atlases. Web atlases can be seen either as a single product or as a complement to a paper copy (e.g.
the Swiss World Atlas and its interactive version1), but both options bring advantages regarding
interactivity and richness of content.
The idea of this Master thesis is to look into the possibilities of service-driven (as opposed to client-
only approach) 3D atlas cartography and to implement a prototype showing how such an atlas can be
done and what are the challenges and advantages involved.

1.2. Motivation
Although 3D atlases do exist and although service-driven web
cartography is already being used for 2D visualization, the combination of
the 3D technologies and the service-driven concept has not been broadly
explored and developed yet (Sieber et al., 2011). Whether service-oriented
architecture is appropriate for 2D and 3D web atlases is still to be
investigated and these web atlases, 3D or not, have to be able to deliver
comparable maps in terms of quality to desktop-based atlases (Iosifescu-
Enescu, 2011). Despite that challenge, rendering 3D geodata in 3D display
not only allows to keep all the information regarding the space, but
moreover it creates the opportunity to use 3D symbology. 3D display and
3D symbology enable to display spatial and thematic information in new
ways, taking full advantages of the possibilities that 3D technology offers. The concept of modern
atlas could highly benefit from its combination with three dimensional visualization and service-
oriented architecture.

Atlas 3D

Service-
Driven

Figure 1: The three core
concepts

Introduction 1

Nadia Panchaud

1 http://schweizerweltatlas.ch

3D data for atlases are available and solutions for their visualization already exist, however 3D
technologies and data bring additional challenges regarding storage capacity, processing power, and
accessibility. Thus, a service-driven approach could help solving these issues through remote storage
and processing as well as facilitating the access. This approach additionally aims at interoperability or
the ability and possibility to integrate data from diverse sources and to chain different web services
while displaying the results at once. Furthermore, the updating process becomes simpler as only the
database on the server have to be modified, while the service generates the new map on the fly. Thus,
there is a gain in productiveness and a reduction of work related to map editing and updating.
However, one problem remains as there is no standardized specification for 3D web service agreed
upon yet.
The inspiring challenge of this work is to build a prototype with advantages that the 3D
functionalities offer regarding geospatial data, as well as the advantages that the service-driven
approach brings regarding the access and the handling of data.

1.3. Goals
The first part involves two main objectives. The first one is to make a general assessment of existing
3D atlases and of their functionalities, while exploring the literature for a complete view of possible
functions in 3D atlases. It should lead to a list of requirements regarding 3D atlases. The second
objective is to explore the different technologies and specifications available for service-driven 3D
data portrayal and to assess their strengths and weaknesses.
In a second step, a prototype of service-driven 3D atlas will be implemented based on the findings in
the first part and on the constraints of this work. This prototype should show that service-driven 3D
atlases are possible as panorama view and as block diagram. The discussion of the results should
bring into light advantages and future challenges as well as recommendations for service-driven 3D
atlas.

1.4. Structure of the Report
After a short introductory chapter (1) that explains the current situation, the motivation and goals of
this project, chapter two deals with the methodology (2). It goes over the different steps followed,
from the analysis part to the discussion of the results, as well as over the origin of the data and the
infrastructure used for the project.
Then, chapters three and four concerns the analysis part itself. Chapter three reviews the literature
(3) regarding atlases and their functionalities and analyze the issues regarding 3D visualization,
whereas chapter four deals with the technology (4) review for digital visualization. Chapter five
defines the requirements (5) for service-driven atlases.
Based on the previous chapters, chapter six explains the implementation of the prototype (6) and
describes the product obtained.
Chapter seven discusses the results (7) and draws from the previous chapters to suggest
recommendations for service-driven 3D atlases.
Concluding chapter eight focuses on the conclusions and outlook (8) of the project as a whole and
discusses some future prospects.

2 Service-driven 3D Atlas Cartography

2. Methodology

2.1. Method
This work is built on two different parts. First, an analysis is conducted based on existing literature
and previous works in the subject to asses the present situation in the area of 3D atlases and 3D web
technologies. Second, based on the first part, a prototype of a service-driven 3D atlas will be
implemented to demonstrate the potential of such atlases.

2.1.1. Analysis
The analysis is conducted in two different areas, literature and technologies reviews, to define a set of
requirements for service-driven 3D atlases. First, it looks into the literature and reviews the definition
of atlases and 3D visualization. It draws from the literature to assess advantages and challenges of 3D
visualization. Furthermore, it discusses the different functionalities found in digital atlases, especially
the ones specific to 3D atlases. Second, it reviews the existing analyzes existing 3D atlases, other 3D
data viewer products. Then, it evaluates the different technologies and specifications available for
service-driven 3D portrayal. The analysis draws a broad picture of what has been done till now in the
area of 3D web atlases and 3D online portrayal and conducts a comparison of available 3D
technologies and specifications based not on advantages and weaknesses, but also appropriateness
for atlases. Finally, it defines and explains the requirements for service-driven 3D atlas.

2.1.2. Implementation
In the implementation step, it will be decided what technologies will be used for the prototype. The
decision will be based on the analysis part and the limitations of this work scope. A service-driven 3D
atlas prototype will be implemented based on the four following elements: a Graphic User Interface, a
Web 2D Service, a 3D Web Service, and WebGL. Concerning the latest, it will first only explore the
possibilities of its implementation for bloc diagrams and then, if feasible, the technology will be
implemented within the prototype.

2.1.3. Discussion of Results
The main results of the analysis parts and the experience resulted from the prototype will be
discussed and used to describe an ideal architecture of a service-driven 3D atlas. It will also point out
weaknesses and strengths of such architecture.

2.2. Data
The implementation prototype uses data from the Atlas of Switzerland 3 (AdS), which is developed at
the Institute of Cartography and Geoinformation at the ETH Zurich, jointly with the Federal Office for
Statistics. The actual atlas is currently available on DVD, but not through the internet. These data will
be used exclusively for the purpose of this thesis and will be deleted after the thesis is submitted. The
use of the swisstopo data is regulated by the terms on use available at http://geodata.ethz.ch/
geovite/Infoblatt_Nutzungsbestimmungen_Swisstopo_EN.pdf. A selection of the dataset from the
AdS, consisting of basic geometries and thematic data in 2D, has already been processed and set up to
be used by a Web Map Service (WMS) in (Ortner, 2011) and constitute the available dataset for this
work. The Data Elevation Models (DEM) that are required to build the block diagrams, belong to
swisstopo as well and are recovered through GeoVite2.

Methodology 3

Nadia Panchaud

2 https://geodata.ethz.ch/geovite/

2.3. Infrastructure
The research, the report and the prototype have been realized on my personal computer (MacBook
Pro) as well as on the computers in the StudiLab and the computer with the Globe Capture Service
server at the Institute of Cartography and Geoinformation, ETH Zürich.
For editing SVG and JavaScript documents, the software Oxygen 13.2 was used. The symbolization of
the data was achieved using QuantumGIS 1.1.0 and 1.7.4 and the plugin Publish To Web3. The figures for
the report used OmniGraffle Professional 5.4 , Illustrator CS 5 and Photoshop CS 5 and the report was
written with Pages iWork 09.

4 Service-driven 3D Atlas Cartography

3 developed internally at the Institue of Cartoraphy and Geoinformation at ETH Zürich (Iosifescu-Enescu, 2011)

3. Literature Review

3.1. Atlases and 3D Visualization
This section goes over the definitions of atlases and of 3D visualizations. It first provides with an
evolution of atlases through the ages and then, deals with the advantages and drawbacks of 3D
visualization.

3.1.1. Atlas Definition
The word «atlas», which is the name of a the Greek god that carries the world, was first used by the
cartographer Mercator in the sixteenth century to describe his cosmography. In the eighteenth
century, it refers to a collection of single maps systematically organized and picturing the whole
earth. A general definition was later agreed upon in the twentieth century and atlases were seen as a
collection of maps with a specific purpose and organized in the form of a book, which usually
includes tables, graphs and text (Ramos and Cartwright, 2006). They usually cover a spatially (from
the world to the city level) and thematically (either very specific, e.g. fish species atlas, or very diverse)
defined area (Borchert, 1999). Classical atlases in paper form have a fixed linear structure and a fixed
format and are not just any book with maps:

«To the layman, any book consisting mainly of maps is an atlas, but technically to the
geographer, no cased collection of maps deserves the name unless it be
comprehensive in its field, systematically arranged, authoritatively edited and
presented in a unified format.» (Alonso, 1968)

With the emergence of digital atlases and computer science, defining atlases as mentioned above
was not sufficient anymore. Thus, the cartography field looked for an expanded and more flexible
definition of atlases. Further definitions included the idea of intention, of specific purpose, of
narrative faculty and of systematic and coherent collection of maps. Now that the purposes of atlases
are wider and more mixed and that users have the possibility of generating their own maps, the
remaining core concepts are their narrative faculty and the intentional combination, not necessarily
of maps, but of processed spatial data (Ramos and Cartwright, 2006) either on paper or on other
media. However, atlases should not be just a simple collection of geoinformation data. They should
aim at cartographically well designed maps, that not only highlight the characteristics of the
information displayed, but that as well allow for exploration (Sieber et al., 2011).
Digital atlases become then atlases that are specifically developed for digital media, either as
standalone product or as a complement to a paper copy. Digital atlases allow for the use of
multimedia, which leads to the fact that the terms «digital» and «multimedia» atlases are sometimes
used as synonym in opposition to paper atlases. Digital atlases can be built on the view-only concept
or offer significant interactivity. The main characteristics of interactive multimedia atlases are their
ability to generate user-demanded or user-created maps thanks to the access to the styling options
and to the data behind the map (Kraak et al., 2007). It additionally allows for a wide panel of
interaction and navigation tools, while combining different media: digital atlases can be highly
dynamic and interactive.
3D atlases can be defined as digital atlases that offer, on one hand, a changing spatial viewpoint (3D
navigation) and, on the other hand, three-dimensional topographic views with overlapping thematic
data and or statistical visualization where the height represents the value of the variable (Persson et
al., 2006). A three-dimensional topographic view can be a panorama, a bloc diagram or a virtual

Literature Review 5

Nadia Panchaud

globe. Among digital atlases, a clear separation has to be done between online atlases and desktop
atlases (usually available on DVDs). The latest ones are closed systems, as book atlases, and only up to
date at the time of making. Whereas online atlases allow an easy access through the web with no
distribution costs and they can be updated at any time. Furthermore, they can play the role of a
geoportal when integrated in a national geodata infrastructure (Kraak et al., 2007).

3.1.2. Advantages and Challenges of 3D Visualization
The advantages of 3D visualization over 2D visualization are still contentious and not as straight
forward as one might think. However, several authors agree upon the fact that the advantageous
characteristics of 3D visualization depend on the task at hand too. It is also important to mention
that 3D visualization is here understood as 3D perspective views on a 2D surface (e.g. a computer
screen), but that are perceived as 3D by the users.
The first characteristic of 3D visualization mentioned in the literature as an advantage concerns its
naturalistic display. It is supposed to make 3D views easier to understand for the non-experts because
it looks more similar to the real world (Beard et al., 2005; Bleisch and Dykes, 2006; Rase, 2003). Thus,
the non-experts, or non-mappers, intuitively comprehend the views because it is first more
compelling and second the three dimensions are integrated (St. John et al., 2001).
Regarding the cognitive, the «cognitive distance» between the real world and the representation is
absent in 3D representations (Meng, 2003). It is thought that, because the third dimension does not
have to be reconstructed from two dimension representation (e.g. isolines), it simplifies the cognitive
process, especially for non-expert users (Rase, 2003).
The literature agrees on the fact that 3D visualization may be more helpful for shape understanding
and orientation tasks, because it allows the users to gain a better comprehension of the landscape
and its general form. It can also happen that 3D geodata lose some of their characteristics and
relations to other features once displayed in 2D and thus it might distort the understanding and
analysis of the real features (de Vries and Zlatanova, 2004). 3D visualization is specially useful for the
qualitative understanding and surveying of space, as well as for approximative navigation (Bleisch
and Dykes, 2006; Bleisch and Nebiker, 2008; St. John et al., 2001; Tory et al., 2006). The users more
effectively grasp the layout of a scene with the help of depth cues, such as shadows, scaling and
distortions. Additionally, texture and shading help for the pure 3D understanding of the view (St. John
et al., 2001).
Although 3D representations seem to have an upper hand regarding shape understanding tasks, it is
not the case for tasks requiring relative positioning or location of several objects (Bleisch and Nebiker,
2008; St. John et al., 2001). It seems that users do not accurately interpret variations in the landscape
accordingly, for instance slope or exposition. Users also perform more slowly and less accurately for
precise tasks, when using 3D representations than when using 2D representations (Bleisch and Dykes,
2006). This is partially explained by the fact that 3D space in 3D representations is non linearly
distorted, which leads to foreshortening issues and some ambiguity regarding object location. It
makes 2D representations more effective to judge of distance and angle between objects (St. John et
al., 2001). However, the question of the role of the interface for the usability of 2D and 3D
representations was raised, and it seems that when the interface does not fit the purpose, both types
of representation become quite useless (Beard et al., 2005; St. John et al., 2001). It emphasizes again
the importance of an adapted and friendly user interface, as well as functions that support a good
usability of the maps (Meng, 2003), even more when the target users are not trained for visual
analysis and interpretation, as it is often the case for atlases.

6 Service-driven 3D Atlas Cartography

One important remaining challenge for 3D visualization are the technologies and specifications for
3D. Although many softwares for 3D processing and visualization of geospatial data are available, the
choice for online visualization is more restricted and might require to install a plugin into the browser
(see more details in chapter 5).

3.2. Atlas Functions
This section discusses the different functions of interactive atlases, with an emphasis on functions
that are specific to 3D Atlas. In many ways, digital 3D and 2D atlases are quite alike regarding their
functionalities, apart from the third dimension which adds supplementary complexity for spatial
navigation and analysis.

3.2.1. Functions of Interactive Atlases
The one aspect that mainly differentiates digital multimedia atlases from paper atlases is the
interactivity and the functionality they offer. Several authors suggested different ways of classifying
functions available in interactive atlases. Ormeling (1997) divided interactive functions in nine groups:
general functions, navigational functions, map functions, database functions, atlas functions,
educational functions, cartographic functions, map use and analysis function, and remaining
functions. Whereas the functions for the AdS are classified into five categories: general functions,
functions for thematic navigation, functions for spatial navigation and orientation, visualization
functions and GIS functions (Bär and Sieber, 1997). Later Hurni (2005) went back to the classification
from Ormeling, while completing and expanding it. Cron explored the classification of interactive
functions for her work on the GUI of the AdS and adapted the division of Bär and Sieber (Cron, 2006).
This classification proved its usefulness and adequateness for a later work on digital atlases and web
service (Ortner, 2011). The Cron's classification is used in this work for two reasons: first, it was built on
the previous classification and specially oriented towards the structure of a GUI (Cron, 2006), and
second, it already offered a useful orientation tool for the implementation of service-driven atlas
prototype (Ortner, 2011).
The classification has five main groups, which are divided in different subgroups. This short overview
of the five groups and subgroups does not pretend to be exhaustive, but aims at laying down the
different types of functions that one might encounter in an interactive atlas.
The general functions, which were present in all previous classifications, consists of non-atlas specific
functions that are available at all time in the interface. Functions such as import, export, home, exit,
preferences and help are part of the general functions. They are considered as granted and should be
present in any digital atlas (Ormeling, 1997).
According to the classification from Cron (2006), the navigational functions encompasses three
subgroups: spatial navigation, thematic navigation and temporal navigation. By spatial navigation are
understood the functions allowing the users to orientate themselves with the help, for instance, of a
reference map and to navigate the map by zooming in and out and panning. It can also refer to more
complex orientation information such as coordinates, altitude, and direction of view and allow
searching for geographic locations. Functions for the thematic navigation enable the users to chose
and change the theme and might include a search tool for the themes and a theme index. Finally, the
temporal navigation tools offer functions to manage the temporal dimension of the data, such as on
a time axis or control buttons for animation.
The educational functions, also called didactic functions, are divided into explaining functions, such as
additional text or graphics, and self-check functions, such as quizzes and games.

Literature Review 7

Nadia Panchaud

The cartographic and visualization functions are what makes the interactive atlases attractive and rich
regarding data display and the exploration of the data. They are made of three subgroups: map
manipulation, redlining, and explorative data analysis. Map manipulation tools allows to turn on and
off layers and legend categories as basic functionalities. Further functions comprise map comparison,
projection changes and modification of the symbolization. Redlining is the ability to modify the maps
with annotations, drawings and other marks without modifying the original data. Explorative data
analysis allows the users to explore and compare spatial distributions of phenomenon in a visual
manner. Functions such as modification of the classification and selection of specific data for the
analysis are part if this subgroup.
Finally, Cron (2006) follows the classification of Bär and Sieber and classify the GIS functions as an
independent groups. It regroups functions that Hurni or Ormeling classified differently. The first
subgroup concerns spatial query functions, such as coordinates and altitude of a point, measurement
of distance and surface and drawing of profiles. There are also thematic query functions that allow the
users to access information about the attributes of the spatial entities and to get statistical tables.
The last subgroup concerns analysis functions oriented towards surface analysis, such as slope and
orientation and aggregation or intersection of data and spatial entities.
How far these different types of functions are implemented in the atlas can impact the choice of
technologies suitable for the project, because the choice of data type and technologies can limit or
hinder the implementation of certain functions. For instance, raster image of a 3D view cannot
provide the users with attributes related to what is on the view. The SWAi solved that by adding
symbols for cities, mountains and volcanoes providing information through tooltips.

3.2.2. Functions Specific to 3D Atlas
Some functions only appear or take all their importance with 3D visualization. The main group of
functions that plays a significant role for 3D visualization is the spatial navigation. The third
dimension adds new navigation parameters to handle this additional dimension. A 3D panorama
usually requires that a point of observation, often called the camera, be set. The pitch determines the
angle between the viewer or camera and the point of interest. An 0° pitch means that the viewer and
the point of interest have the same elevation and a 90° pitch means that the viewer is directly above
the point of interest. The yaw is the azimuth, meaning in which direction the viewer is looking and a
yaw of 0° is the North. The angle of view sets the width of the scene, commonly called field of view
too (Singh, 2001). The distance to the point of interest and the altitude of the viewer are also relevant.
The Pan function is very important because it gives the possibility to the users to navigate in a very
intuitive way, as if they could play with a model.
It is important to mention that not all functions are implemented in all atlases, both 2D and 3D. The
general functions and some spatial and thematic navigations are usually present, whereas GIS
functions and cartographic functions are in comparison less often offered (Cron, 2006; Ortner, 2011).
Regarding available 3D web atlases and geoportal (see details in chapter 5), one can see that the 3D
functionalities are still not well developed and that the implementation of complex functions only
come with more mature and complete products, such as the AdS, whereas only basic functions are
present in test and beta version (see table in appendix VIII).

8 Service-driven 3D Atlas Cartography

4. Technology Review

4.1. Existing Online 3D Atlases and 3D Visualization Products
This section explores the already available 3D web atlases and gives an overview of their main
characteristics. 3D web atlases are not legion, far from that. Therefore, other online 3D visualization
tools are included in the analysis. These includes virtual globes, 3D viewers and GIS-based viewers.
Additionally, the analysis takes into account Atlas of Switzerland 3, which is a non-web 3D atlas,
because its design and tools are considered as a best-practice example for a national atlas4.

4.1.1. 3D Atlases and 3D Viewers of Geoportals
3D atlases aim at fulfilling the traditional role of atlases while taking advantages of the interactivity
and 3D possibilities offered by digital means, whereas the viewers of geoportals aim at displaying the
information available, often at the national level within the framework of a national geodatabase or
geodata infrastructure. The later ones usually offer raw thematic data and do not provide with
classification of the data, nor additional information.

Swiss World Atlas interactive SWAi (Switzerland)5
The SWAi is a product of the Institute of Cartography and Geoinformation IKG at ETH Zurich. It offers
2D and 3D displays, including virtual globes and block diagrams, of a wide selection of thematic
maps. It offers 2D maps ranging from a world view to local maps for selected locations. It completes
the printed version of the Swiss World Atlas (SAW) and follows the same themes for the maps. The
option globe is offered for twenty-five thematic maps and seven block diagrams are available for
locations with topographic characteristics of interest (as of 16.03.2012). The virtual globe option is
based on the NASA World Wind and the block diagrams have been developed in-house (Hurni et al.,
2011). The atlas graphic user interface is offered in four languages (German, French, Italian and
English), but the legend is for now only in German. New maps are continuously added and the
legends are being translated.

Figure 2: Block diagram and virtual globe from the Swiss World Atlas interactive

Technology review 9

Nadia Panchaud

4 «The Atlas of Switzerland is highly regarded by the international cartographic and GIScience community and it is often
referred to as "best-practice" for design, production and delivery of a national atlas.» Prof. Cartwright, President of the
International Cartographic Association and Professor of Cartography and Geographical Visualization at the RMIT University
in Melbourne (Hurni et al., 2011)

5 http://www.schweizerweltatlas.ch/de/schweizer-weltatlas/3.html

No plugin is needed to access to the SWAi. It is accessible through a Java Web Start that allows it to
run outside the browser as an independent application and thus overcome issues with browser
compatibility.

Géoportail beta (France)6

The Géoportail is managed by the Institut Géographique National et the Bureau des Recherches
Géologiques et Minières with the support of private suppliers for the technology part and of two
public ministries. It offers 2D and 3D displays as well, but does not have block diagrams. It comprises
of a virtual globe draped with aerial images that allows a bird-eye view of the relief. The 3D module is
currently only in beta version and thus only provides ten themes or types of data that can be draped
on the relief. Even though its name could suggest an access to data, it is not the case. The
Géocatalogue allows the users to access the geospatial data. The Géoportail requires the installation
of the plugin TerraExplorer to view the 3D module. It can be integrated in other webpages through its
API and is compatible with Windows, Mac and Linux operating systems.

GeoPortal Bund (Germany)7

The GeoPortal is developed and managed by the Bundesamt für Kartographie und Geodäsie (BKG),
mandated by the Interministeriellen Ausschusses für Geoinformationswesen (IMAGI) of the federal
government.
The GeoViewer of the GeoPortal Bund offers three modes: BasisView, National Geo-DataBase and
GDI-DE Model-Project for the protected areas theme. All of them provide with a 3D viewer for certain
scale (1: 25 000 and smaller). The 3D viewer is still very basic with only the options viewpoint,
exaggeration, distance and pitch, because the project is in development. The choice of layers has to
be done in the 2D viewer and then the 3D view can be generated. No plugins are needed to view the
3D models, only a browser.

Figure 3: Viewer of the Géoportail. Relief view with the layers roads, orographic names, national maps (transparent)
and aerial image

10 Service-driven 3D Atlas Cartography

6 http://www.geoportail.fr/5069712/visu3D/afficher-en-3d.htm

7 http://geoportal.bkg.bund.de/nn_78634/DE/Geoviewer/Geoviewer_node.html

Infrastructura de Datos Espaciales de España IDEE (Spain)8

IDEE supports the creation of a Spanish Spatial Data Infrastructure, with data, metadata and services.
It links several regional spatial information systems. The Spanish government, the Ministerio de
Fomento (Ministry of Public Works) and the Consejo Superior Geográphica (Geographic High Board)
are responsible for it. An API is available and the website offers a map viewer, WMS services and a 3D
Viewer. The 3D Viewer only works in Explorer and Firefox and only on the operating system of
Windows, but requires a plugin which is not compatible with Firefox 11.0, furthermore, on Windows
Vista or Windows 7, it only works with Firefox. So it is impossible to make it work on an up-to-date
computer. Additionally, the map viewer, while offering many options to link it with other data sources
(servers and kml data), encounters problems when loading the base map in all browser, except
Firefox. This is a perfect example that supports the necessity of interoperability and standards for 3D
technologies online. The development team could not follow with the updates of the browsers and
operating system, making the geoportal almost unusable.

Figure 4: Corresponding views in 2D and 3D of the GeoPortal Bund

Figure 5: 2D Viewer of the IDEE

Technology review 11

Nadia Panchaud

8 http://www.idee.es

Atlas of Switzerland 3 (AdS)9

The AdS is a project conducted by the Bundesamt für Landestopographie, the Bundesamt für
Statistik, the Institut für Kartografie und Geoinformation (ETH Zürich) and the ETH-Rat. The AdS
offers 2D thematic and physical maps as well as block diagrams, panorama views and prism maps in
3D. A multitude of statistical data is available under different themes (Nature and Environment,
Society, Economy, State and Politics, Traffic and finally Energy and Communication). It provides the
users with a wide range of tools, from setting the weather and light in the sky to the colors and
classes of thematic maps.

Figure 6: Panorama view and block image in the Atlas of Switzerland 3

It is available on DVD, but it does not require to install it on the computer and works with both
Windows and Mac operating systems. Presently, there is a will of the different actors to bring the AdS
online (Hurni et al., 2011).

4.1.2. Virtual Globe

Google Earth10

Google Earth is probably the most well-known virtual globe application among the public. Although
it is a closed source application, the basic version can be downloaded for free. It offers different view
modes: Google Street View, Flight Simulator, Google Ocean, Google Sky and Google Sketch up.
It can handle vector, raster and kml formats, as well as dynamic objects, 3D building models, statistic
surfaces, atmospheric and light effects. It is available as a desktop application, a web plugin and as a
mobile version and it support WMS. Although Google Earth is compatible with a wide range of
formats and offers a significant amount of default data, it has its limitations. First, it is closed source

12 Service-driven 3D Atlas Cartography

9 http://www.atlasderschweiz.ch/atlas

10 http://www.google.com

and thus excludes any own development. Then, the data usage permissions are largely limited. Finally,
it does not handle elevation data (Walker and Kalberer, 2010).

NASA World Wind
It is an open source and free virtual globe API, that was created by the NASA's Learning Technologies
Project and which is now developed by NASA staff and open source community developers. The basis
looks like Google Earth with DEM, satellite image and navigation tools. Additionally, there exist plenty
modules with different capabilities. These modules can handle WMS, vector and raster formats,
elevation, 3D objects and models and they are available through a Java Web Start. The downside is
that each module can currently only be used as a single unit. Additional programming and
development is possible with a Java Software Development Kit (SDK) (Hurni et al., 2011; Walker and
Kalberer, 2010).

Figure 7: Zoom in on Switzerland on the virtual globe of NASA World Wind (module WMS), with the isoline of the
magnet field strengths from the WMS of the Swiss government

osgEarth
It is an open source and free virtual globe, based on a geoid (Hurni et al., 2011), developed and
maintained from the firm Pelican Mapping (Pelican Ventures, 2012). It is a scalable terrain rendering
toolkit for OpenSceneGraph (OSG) written in C++ using OpenGL and it is multi-platform and
standard-compliant. OpensSceneGraph is an open source graphics toolkit for high-performance
graphics application such as games, virtual landscape and scientific visualization. There exist many
plugin to load a wide range of data formats as well (OSG Community, 2007).
OgsEarth supports raster and elevation formats in the form of WMS, WMS-T (time), WCS, TMS (Tile
Map Standard) as well as vector formats, such as shapefile, and 3D models. It additionally offers a
Virtual Planet Builder terrain database. The main features of this virtual globe are image rendering
tasks (its ability to drape vector data on the terrain) and reprojection on the fly (Walker and Kalberer,
2010). Based on these features and functionalities, it could be a good candidate for the
implementation of a 3D Viewer for a web atlas (Hurni et al., 2011).

Open Web Globe
It is developed by the Fachhoschule Nord-West Schweiz Muttenz as an open source project and aims
at true visualization of significant amount of geodata. For that, it uses exact reference frames. It is
now in a beta version on WebGL, so it can be used directly in the browser. The i3D version supports

Technology review 13

Nadia Panchaud

WMS, DEM, satellite images, dynamic objects, POIs, prism maps, 3D objects and real-time data. It can
be further developed with the OpenWebGlobe SDK, which would allows to create cartographic tools,
such as symbols and diagrams and thus is seen as a 3D-viewer candidate for a web atlas platform
(Hurni et al., 2011). However, vector and kml data are not supported yet and the beta WebGL version is
not fully operational yet, for instance WMS are not implemented at the time of writing. The source
code is written in C++ and the code for the viewer in JavaScript and thus it is cross-platform.

Figure 8: Close zoom in on the demo version of the OpenWebGlobe

4.1.3. GIS-based Viewers

gvSIG 3D
It is an open source and free GIS-based virtual globe. It acts as the 3D extension to gvSIG and needs to
be installed on the computer. It supports many different formats: raster, vector, elevation, 3D models
and OSG. It is fully integrated in the GIS desktop, which allows to edit and style the data very easily.
Additionally to that, there is the osgVirtualPlanets, which is a standalone framework (Walker and
Kalberer, 2010).

ossimPlanet
It is a free and open source 3D viewer for the GIS application ossim. It supports advanced geospatial
image processing and OpenSceneGraph, but is not widely accepted in the open source community
(Hurni et al., 2011). It supports the following formats: raster, vector (as kml), WMS, elevation (ossim
format) and a QGIS plugin project is currently running (Walker and Kalberer, 2010).

Summary
The following table gives an overview of the different capabilities of the virtual globes mentioned
above. Many of them support a wide range of data formats and are open source, although under
different licenses.

14 Service-driven 3D Atlas Cartography

Table 1: Characteristics of Virtual Globes and possible import formats

Virtual
Globe

Open
Source

Type of
License

Language Raster Vector Elevation KML WMS OSG 3D
Models

Google
Earth

no Google
Terms

C++ (?) yes yes no yes yes yes yes

NASA World
Wind

yes NASA
Open
Source
Agreement

Java yes yes yes yes yes yes yes

osgEarth yes LGPL C++ yes yes yes yes yes yes yes

Open Web
Globe

yes MIT C++ yes yes yes planned planned plan
ned

yes

gvSIG 3D yes GPL C++, Java yes yes yes yes yes yes yes

ossimPlanet yes LGPL C++ yes yes yes yes yes yes no

4.2. 3D Technologies Review
This section explores the available technologies for 3D visualization. It starts with data formats for
online graphic data and, more specifically, 3D geodata. It makes an assessment of their strengths and
weaknesses, as well as their possible implementation fields. Then, it looks at 3D viewers for such data
online. After, it moves to web services that aims at handling 3D geodata. Finally, it concludes with
some possible architectures that are found in the literature for combining these different
technologies. This section does not aim at being exhaustive, but mentions the most used formats and
technologies.

4.2.1. Graphic Formats

VRML11 and X3D12

Virtual Reality Modeling Language is a standard file format for representing 3D interactive vector
graphics. It was developed by the Web 3D Consortium and became an ISO standard in 1997. It has
been superseded by X3D. Some of its limitations include the dependency on particular VRML viewer,
the lack of ease for users to add data and the lack of some interactivity (Beard et al., 2005).
X3D is the ISO standard based on XML for representing 3D graphics and was developed as the
successor of VRML by the Web 3D Consortium. There are many open source platforms that can parse
and interpret X3D, which makes it a good candidate for interoperable solution. It provides with easier
interaction possibilities with other XML formats and it does not depend on specific viewers (Beard et
al., 2005), however a plugin (viewer) is still necessary.

WebGL13

WebGL is the equivalent of OpenGL ES for browsers developed by the Khronos Group. Through the
extension of JavaScript capabilities, it provides with interactive 3D graphics that are based on OpenGL
and that uses the HTML5 canvas elements. Thus, it does not require any plugin and can be
implemented directly into the browsers. However, there is a rather significant limitation to the

Technology review 15

Nadia Panchaud

11 http://www.web3d.org/x3d/vrml

12 http://www.web3d.org/x3d

13 http://www.khronos.org/webgl

number of vertices and thus, only small models at high resolution can be displayed. It could though
be a good solution for block diagram because they have a limited extent. Otherwise, the model has to
be broken down into different segments (Visual Size, 2011).

KML14

The Keyhole Markup Language is an OCG standard that provides with web-based geographic
annotations and visualization for both 2D mobile maps and 3D virtual globes. It was, at first,
developed for Google Earth and then was submitted by Google to be an OGC
(Open Geospatial Consortium, 2012). KML data are widely accepted input for many open source
virtual globes.

GML15 and CityGML16

The Geography Markup Language is a XML-based modeling language for geographic features. The
CityGML is an application schema of the GML that allows for the storage and representation of
virtual 3D city and landscape models. Both are OCG standards, but only GML is an ISO standard.
Because these two standards are XML-based and thus can be transferred as text over the internet,
they are good candidate for a web 3D data retrieval service.

Flash17

Flash is a multimedia cross-platform browser-based application that can be used to add video,
animation and interactivity in the browser as 2D content. It is a proprietary format from Adobe and it
might require to install a plugin (Google Chrome and Internet Explorer already have Flash
integrated). It is a widely used technology, but not open source.

SVG18

Scalable Vector Graphic is a XML-based file format, mainly for two-dimensional vector graphics and
pseudo 3D, but it also supports raster file and foreign object, e.g. HTML. It was developed by the World
Wide Web Consortium (W3C) (Dahlström et al., 2011). Most browsers support some versions of SVG
and it is a very flexible open standard. It is accessible by any DOM parser and it allows for interactivity
with JavaScript and its Event Listeners. It is WMS-compliant and can be modified in a text editor,
while needing very little local data for an interface (George, 2006). All of this and its styling
capabilities make SVG a good candidate for a graphic user interface (GUI). It allows to use solely SVG
for webpages, thus making them scalable independently from the screen resolution (Schnabel, 2002).

X3DOM
X3DOM is framework and runtime to support discussion within the W3C and Web3D communities on
how to integrate HTML5 and X3D. It is currently at the experimental stage and it aims at being an
open and human-readable 3D scene-graph embedded in the HTML DOM in a very similar way to how
SVG is embedded in HTML (Behr et al., 2011). It has the ability to render 3D models within a HTML5
browser through WebGL, without any plugin (x3dom, 2012).

16 Service-driven 3D Atlas Cartography

14 http://www.opengeospatial.org/standards/kml

15 http://www.opengeospatial.org/standards/gml

16 http://www.opengeospatial.org/standards/citygml

17 http://www.adobe.com/products/flashplayer.html

18 http://www.w3.org/Graphics/SVG

Collada
Collada is an open standard XML schema used to exchange 3D asset between different applications
that have incompatible authoring formats. Its filename extension .dea stands for digital asset
exchange (Collada Community, 2011). Collada can be seen as a set of document and an API that help
solving issues of transferring data between software without losing information (Pulli, 2006). It
allows to combine software packages into powerful tool chains to create 3D content. The Khronos
Group manages this 3D computer graphics format and many game engines ands 3D software
applications, such as CAD and GIS softwares, can render Collada file and export their data into the
Collada format.

4.2.2. 3D Viewers

FreeWRL/FreeX3D
FreeWRL/FreeX3D is an open source and cross-platform compliant VRML/X3D browser. It is now
developed under the LGPL and is believed to outclass other X3D plugins (FreeWRL, 2012).

BS ContactGEo
BS ContactGeo allows to visualize geographic information by enhancing third-party hardware and
software products via the integration of interactive and Internet ready real-time 3D technology
(Web 3D Consortium, 2011). It is 3D viewer that supports a wide range of formats such as X3D,
CityGML, kmz.

4.3. Web Services
Web services allow end users to access functionality delivered by a service provider. It uses the
concept of request-response between a client and a server. The client (service consumer or end user)
sends a request to the service provider and in return the service provider sends a response, containing
the results asked for, to the client (Iosifescu-Enescu, 2011). The response depends on the type of web
services. Some services provide directly geodata, such as the Web Feature Service (vector data) or the
Web Coverage Service (raster data), other deliver their visualization, such as the Web Map Service
(WMS), in the form of an image, whereas other offer processing tools, such as Web Processing Service.

Figure 9: Web service concept

Each web service offers a service description, that allows to identify its interface and that defines its
request format. The request itself contains parameters telling the server what is asked for by the
user. Regarding geodata, important parameters concern the geographic extent, the coordinated
reference system and the content, for instance. The request can made through http GET, encoded in
KVP, or http POST (optional) that includes a message body.
In cartography, and especially when talking about 3D visualization, the amount of data needed for the
display of the information can be tremendous. Having all the data on the client side is not always
possible nor desirable for performance or compatibility reasons. Web services enable to deliver only
the visualization of the data and not the data themselves and thus allowing thin-client to access the
information. Additionally, a service-oriented architecture guarantees that the application is
independent from the ultimate implementation because the hardware and processing capabilities of
the end user do not have to be taken into account. Another major advantage of web service concerns

Web
ServiceClient

1. Send request (http)

2. Send response (http)

Technology review 17

Nadia Panchaud

their modularity: they can be chained (one web service serves as input for another one) or combined
(several geodata sources can be display together, without having any data changing hands).

4.3.1. Web Map Service (WMS)
The WMS is widely use in cartography because it provides the user with spatially referenced 2D maps
in the form of an image (jpg or png) dynamically from geographic information
(Open Geospatial Consortium, 2006). The request GetMap enables the client to specify the
geographic extent, the reference system, the layers and styles as well the format and size of the
output image. The symbolization is either already defined by the administrator of the service or, when
enable, by the user, which send the styling information with the request. The styling is done with the
help of the Styled Layer Descriptor (SLD) and Symbology Encoding (SE) standards as well as Filter,
which all are standards from the OGC.

4.3.2. Web Terrain Server (WTS)
WTS was developed by the OGC already in 2001 in an attempt to create a standard for a 3D scenes
when it became clear that it would require many extensions and modifications to the WMS
parameters. A 3D scene or a view can be defined as a 2D projection of three-dimensional features into
a viewing plane (de Vries and Zlatanova, 2004). It produces views or 3D scene of geo-referenced data
in different image formats, but does not contain nor deliver any actual data. Parameters such as Point
Of Interest, Pitch, Yaw, Distance and Angle Of View were introduced to allow the generation of the
views (Singh, 2001). Otherwise, on the conceptual level, it resembles a WMS with GetCapabilities and
GetView requests. The drawback of WTS is the navigation through the views, because it requires to
regenerate the view from the server every time. It never became a standard because the OGC
replaced it with the Web Perspective View Service (see below).

4.3.3. Web Perspective View Service (WPVS)
The WPVS is an internal OGC draft developed in 2005 as the successor of the WTS. It does not allow
for thematic data and requires navigation step by step like for the WTS. However, it does offer high-
quality visualization and that regardless of the client hardware capabilities for rendering (Hagedorn
et al., 2010). Thanks to that and to the fact that the WPVS only transfers standard image formats, it is
appropriate for simple client applications and requires little data transfer. The WPVS also never
became a standard, because of its drawbacks regarding the use of the portrayed geodata, the
navigation and the retrieval of feature information. Thus, the OGC decided to further develop a more
complete version of a 3D web service under the name of the WVS (see below).

4.3.4. Web Perspective View Service++ (WPVS++)
To overcome the drawbacks of the WPVS, the Hasso Plattner Institute suggested an improved WPVS .
WPVS++ can be used for thematic information transfer through multiple layers of images. The
information would be encoded as images. They also developed complex request parameters to allow
an easier handling of more advanced projection systems and interaction with the image. They proved
that such a service could be done on a thin client based on JavaScript (Hagedorn et al., 2010).

4.3.5. Web View Service (WVS)
The WVS is the latest standard candidate for an OGC 3D web service (along with the W3DS, see
below). The WVS extends and overcomes the restrictions of the Web Terrain Service (WTS) and the
OGC-internal Web Perspective View Service (WPVS) (Hildebrandt and Döllner, 2010); in a way, the WVS
can be considered as the 3D counterpart for the well-established WMS. It became an OGC Discussion
Paper in 2010. It provides with a portrayal service for three-dimensional geodata, mainly by delivering
2D images displaying a 3D scene constructed from 3D geodata (Hagedorn, 2010b). It supports thin

18 Service-driven 3D Atlas Cartography

clients, like before, but now also supports analysis, navigation and information retrieval for portrayed
3D geovirtual environments. It is still built on an image-based approach, allowing a thick server-thin
client concept.
In a WVS, a 3D view is defined by its projection type and parameters (how to go from a 3D world to a
2D representation), its data layers, the styling information and the basic portrayal information
(dimension, format) (Hagedorn, 2010b). All these parameters can be encoded in a simple HTTP GET
interface allowing for encoding views on complex 3D worlds by URL, transferring them easily, e.g., by
email, and embedding them, e.g., into webpages (Hagedorn, 2010a).

4.3.6. Web 3D Service (W3DS)
W3DS is a standard candidate for a portrayal service for three-dimensional geodata delivered as
scenes. These scenes are made of display elements, optimized for efficient real time rendering and
can be explored in internet browsers with 3D plugins or loaded on virtual globe . The output is not an
image, but a scene graphs consisting of a tree like structure of nodes, groups, transforms, shapes,
materials and geometries (Schilling and Kolbe, 2010). It has been developed since 2005 and became a
discussion paper in 2010 alongside with the WVS. It aims at supporting X3D and KML at first and
offers different levels of details (LOD). Contrary to the WVS that allow a thin client concept, the W3DS
requires a medium client, because the client is responsible for the rendering of the elements
(Schilling and Kolbe, 2010). Thus, it requires more bandwidth and likely a 3D plugin for the
visualization.

4.4. Architectures
Service-driven cartography is built on the concept of Service Oriented Architecture (SOA). This
architecture couples loosely interacting software components that provides services (Iosifescu-
Enescu, 2011). Services are central to this architectural concept and can be seen as modular units that
allow to access, manage, process, combine and visualize heterogenous complex and vast
geoinformation sources (Hildebrandt, 2008). These modular units can thus assemble into a network
of services dealing with different tasks and data source. The SOA further supports distributed systems
and thus allows to distribute the resources required for the visual representation in terms of
network, storage and computing capacity over the whole network of computer (Hildebrandt et al.,
2011).
The OGC defines different ways to balance the geovisualization pipeline between client and server.
The four-stage pipeline defines a process that goes from the non-graphical raw data on a repository
to the visualization on a display device (Hagedorn, 2010b).

Figure 10: 3D Visualization Pipeline according to the OGC, adapted from (Hagedorn, 2010b; Schilling and Kolbe,
2010)

When the pipeline is run on a single desktop computer within a single software framework and no
information sharing is required, it usually does not represent any problem to deal with 3D geodata.
However the components of the portrayal pipeline do not have to be on the same system, they can be

Data
Repository

Data
Selection

Display
Elements

Generation
Image
Display

Image
Rendering

Technology review 19

Nadia Panchaud

distributed over the internet and that is where the SOA concept comes in. In server-client application,
the components are split between one or more servers and clients. Usually, the lower level component
is on the server and the remaining tasks are dealt with by the client. That is was is called a thick
client, because of its high complexity. The advantage is that the client can run any analysis or
rendering tasks on the data. However, regarding 3D geodata in web application, it reaches some limits
due to computing and memory resources and bandwidth requirement to deal with 3D data on the
client side (Schilling and Kolbe, 2010).

Figure 11: Balancing schemes between portrayal servers and clients according to the OGC, adapted from
(Hagedorn, 2010b; Schilling and Kolbe, 2010)

To go around that issues, the different tasks can be split differently and the client has then only the
display stage to deal with, which allows to access 3D geodata without issues about interoperability,
computing resources for rendering or memory for storage. Because the processing, the
generalization, the symbolization and the rendering of the data are be done on the server side and
optimized for visualization and transfer, it enables any thin client to have access to complex 3D
geodata sources in the form of images.
Two main types of architecture for 3D service driven geovisualization. The first family requires plugins
to display the views or data in the browser. It is generally be either VRML plugin displaying data from
VRML modules (Beard et al., 2005) or, in later projects, X3D plugins that are linked to X3D models or
GML features from a WFS or a W3DS (Beard et al., 2005; de Vries and Zlatanova, 2004; Hetherington et
al., 2007; Hildebrandt et al., 2011). But there are also other less known plugins that are available, such
as the one from the Géoportail France, TerraExplorer. The OGC further suggested a simple workflows
with a W3DS, including a browser with a 3D plugin for the requested and supported 3D formats and
possibly connection to a WFS for input data. It returns a complete static 3D scene for exploration and
analysis within the browser (Hagedorn et al., 2008). The advantage is a really simple architecture,
however the necessity of a plugin is a drawback. A similar architecture was used by Geoscience
Australia (Beard et al., 2005) to display sea bottom on the internet, but using VMRL models and a
VRML plugin for the browser.

20 Service-driven 3D Atlas Cartography

Generally, the use of plugin allows to display more complex models and supports more interaction
with the data, because it bypasses the limitations of the browser. However, it can causes
interoperability and cross-platform issues. These architectures are often used for massive 3D city
models or large landscape model from complex sets of geodata.

Figure 12: First family of architectures, using plugins to display the data in the browser

The second family uses WVS and similar services in order to generate perspective views of landscape.
They do not require any plugin and offer a wide variety of combination and chaining of different web
services. They usually take advantages of API, such as Google Earth or Google Maps to display the 3D
views and models or they uses CityGML models. However, the simplest use consists of displayin the
view in an image format directly within the browser.
For instance, Hildebrandt (2008) suggested an exemplary architecture of a service-oriented
subsystem, using existing and newly proposed services that implements a process for the on-the-fly
integration, generalization and portrayal of map-like 2D and 3D visual representations. Its goal is to
offer a standardized and configurable service-driven visualization pipeline for heterogeneous
geodata. The new services are uses input data from existing web services from the OGC.

Figure 13: Architecture of a service-oriented subsystem (Hildebrandt, 2008)

Web Feature
Service

W3DS

Browser

3D plugin

Client

Server

Modified from (Hagedorn et al., 2008)

Browser

X3D plugin

Server

Client

X3D models CSS &

Javascript

Modified from (Hetherington et al., 2007)

VRML models

Browser

VRML plugin

Client

Server

Modified from (Beard et al., 2005)

Browser

X3D plugin

Server

Client

WFS

GML

X3D

XSLT Transfer

Modified from (de Vries et al., 2004)

PortrayalGeneralizationData Compatibility

Geovisualization
Process Service

Integration
Service

Generalization
Service

Web Perspective
View Service

Web Map Service

Web 3D Service

Compatibility
Validation Service

...

...

Catalogue Service Web Feature
Service

Web Coverage
Service Web Map Service Styled Layer

DescriptorTexture

Technology review 21

Nadia Panchaud

Another architecture, simpler and from an earlier time was suggested by Altmaierr and Kolbe (2003).
It used the WMS, WFS and WCS as inputs for a WTS. It aimed at providing perspective views of maps,
consisting of digital terrain models draped with 2D maps and orthophotos. Because the WTS could
not integrate 3D data directly (such as WVS and W3DS) and can only be considered as 2.5D. However, it
is a good example of a simple architecture using other services as inputs.

Figure 14: Architecture of the WTS, as realized by the open source system Deegree (Altmaier and Kolbe, 2003)

Web Feature
Service

Web Coverage
Service Web Map Service

Web Terrain
Service

Service Layer(s)

Data Layer

Database Filesystem
GIS

Scene views [png, jpg]

DTM/3D vector data [GML3]

DTM/Textures [png, jpg, GeoTiff]

Textures [png, jpg]

Raster images [png, jpg]

2D vector data [GML 2, 3]

22 Service-driven 3D Atlas Cartography

5. Requirements for Service-driven 3D Atlases

This chapter explores the different requirements for service-driven 3D geovisualization and 3D atlas
systems. It looks into previous works and literature to list the core criteria for such systems.
With the increasing role that internet plays in the sharing of geodata, two trends of requirements for
the visualization of 3D geodata have emerged. On one hand, users want to be able to access large
amount of spatial data from many different sources as well as processing power and computing
functionality. On the other hand, these resources have to be accessible from different places and from
different users (Hildebrandt and Döllner, 2010). These two trends concern mostly system
requirements, to which one must not forget to add visualization and interactivity requirements that
are more specific to the atlas and 3D concepts.
This works attempts to combine three important concepts, that are atlases, service-driven system and
3D visualization. The following figure illustrates in which concept field of influence the different
requirements are found.

Figure 15: Requirements for service-driven 3D atlases in their fields of influence

R2
no plugin

R3
cross-platform

R1
service-oriented

architecture
& thin client

R4
interoperability
& integration

R6
reuseable &
robustness

Service-driven

3DAtlas

R10
level of

abstraction

R11
effective and
high quality
visualization

R12
user styling

support

R8
support for

massive amounts
of geodata

R13
coordinated and
multiple views

R14
high degree

of interactivity

R15
intuitive

navigation

R16
data query

&processing

R9
dynamic geodata

R5
extensibility

& updatability

R7
open source

Requirements for Service-driven 3D Atlases 23

Nadia Panchaud

5.1. System Requirements
The system requirements are based on general requirements for 3D geovisualization systems and on
specific technical requirement for this project. These are relevant for 3D geovisualization, but not
specific to it. First and foremost, the system is based on a service-oriented architecture (R1) to allow
access to the visualization of geodata within the atlas, no matter what are the processing softwares
or capacities of the client. It has to be accessible from a thin client. The visualization happens directly
in the browser and no plugin is needed (R2). The absence of plugin aims at simplifying the use of the
atlas and to avoid any compatibility issues between plugin and browser or platform. For instance, the
IDEE 3D viewer requires a plugin that only works with some versions of Firefox, and thus highly
limiting the access to the spatial data infrastructure platform. The system has to be able to work fully
and independently from the software and hardware platform (R3), which increases the dissemination
and prevent any compatibility issues (Hildebrandt and Döllner, 2010; Hildebrandt et al., 2011).
Integration and interoperability (R4), which increases the integration of external data sources,
especially through applying standards, are required to connect computer systems effectively and
efficiently on different levels of abstraction (Brodlie et al., 2007; Hildebrandt and Döllner, 2010;
Hildebrandt et al., 2011). Interoperability additionally guarantees the access to 3D data sources in a
homogeneous way for all users as well as the application of the same tools for processing and
analysis to data from different sources (Altmaier and Kolbe, 2003). This allows to build flexible and
adapting systems that can be readjust for different tasks and target users. Additionally, the different
components of the system can serve several systems in varying combinations and with diverse goals
(Andrienko et al., 2005).
The support for easy updating, scale-up, extensibility (R5), reuse, and robustness (R6) are part of non-
functional features. However, they help make the product long-lasting and optimizes its use and
development, as well as its performance (Hildebrandt and Döllner, 2010; Hildebrandt et al., 2011). For
instance, a specific web service can be used in different atlas products provides significant gain in
time or an existing web service for a national atlas can be extended to build a world atlas. Open
source solutions (R7) should be preferred because they allow a direct access to the code, thus
enabling a high flexibility and extensibility of the product, while benefiting from the developments
within the community.
The last two system requirements are more specifically oriented towards 3D geovisualization. To build
a comprehensive atlas requires support for massive amount of geodata (R8), as well as dynamic
geodata (R9). This is especially important regarding 3D geospatial data that can be voluminous. The
speed of data access and of the display generation are significant factors in the ease of use of 3D
geovisualization (Andrienko et al., 2005). Without the availability and support for large set of data and
its dynamic access, the usefulness of such atlas decreases.

5.2. Visualization Requirements
Visualization requirements are specific to 3D geovisualization and atlases. 3D web atlases are a
specific type of 3D geovisualization and because they aim at a general public, which is less familiar
with geodata and online representations, some of the requirements are more prominent than others.
The ability to build geovisualization systems at an increasing level of abstraction (R10) is becoming a
relevant requirement (Döllner, 2005; Hildebrandt and Döllner, 2010), especially in order to raise
productivity. The higher the level, the less details have to be handled and thus the amount of code is
reduced. For instance, the visualization has to move from a single-object representation to a higher
level of abstraction such as textures that replicate a group of single objects.

24 Service-driven 3D Atlas Cartography

 A crucial requirement concerns the quality and the effectiveness of the visual representation (R11).
The web services should be able to deliver visual representations that are as good and effective as
standard cartographic products (Hildebrandt et al., 2011; Iosifescu-Enescu, 2011). It has already been
demonstrated that 2D maps of an equivalent quality could be generated from a cartographic web
service (Ortner, 2011) and the challenge is now for 3D view and 3D objects. For instance, the quality
and effectiveness of service-driven atlas application regarding the visualization can use desktop
application as benchmark. Support for user styling (R12) is highly relevant for web atlases because it
allows the users to manipulate not only the representation of the landscape, but also the
representation of the thematic data (Hildebrandt et al., 2011). It makes it possible to generate different
views from the same data, for instance by offering color schemes or landscape and atmosphere
setting to match the time and the weather. Multiple and synchronized (or coordinated) views (R13) of
maps is an important feature for simple exploratory visualization because it allows to visually
compare geodata at the same time from different point of views (Hildebrandt and Döllner, 2010). 3D
geovisualization offers more complex information to the users and thus coordinated views help
understanding the representation by breaking down the complexity.

5.3. Interactivity Requirements
Interaction and dynamic display (R14) have to be at the center of digital atlas conception in order to
get the best out of the geodata visualization. It allows the users to build their own knowledge and
representations from the geodata by exploring and comparing them. Interaction can be rather basic
in the earlier phases of the conception of a web atlas, but to fully take advantage of the multimedia
capabilities of the web, the user has to be able to interact with the visual representation of the
geodata. Interactive tools must be design with user-center design and using the less-is-more
concept, otherwise they might become an obstacle to a user-friendly GUI. There is a few interactive
functions that can be seen as minimum requirements for an atlas to be useable and that are found in
most atlas, even the simpler ones. The general functions should always be present (Ormeling, 1997),
although there are found in different manners and quantities. They are often set up as output
elements such as icons or status bar (Cron, 2006). They are important because they give the users
information about the state of the atlas (zoom mode or information mode for instance) and allow to
launch general functions such as quit, print and forward/backward. Another group of interactive
functions that are vital for any basic web atlas are navigation functions, especially the spatial and
thematic ones. Atlases organize spatial knowledge spatially and thematically and without proper
navigation functions to interact with the atlas content, the atlas has little use.
3D geodata are more complex than 2D geodata and thus an appropriate and intuitive spatial
navigation (R15) is indispensable. Because the 3D display appears more realistic, the user expects to be
able to manipulate it like one manipulates a 3D object in the real world: one wants to be able to see
the different faces of the object or to go closer and further from it for example. This navigation should
be intuitive enough so that no training is required for the user to use the atlas spatial navigation
panel beyond tooltips and meaningful symbols. For instance, using the scroll and zoom functions
already implemented for the navigation in web pages goes in this direction, as well as using the
arrow on the keyboard. In a more advanced phase, querying and simple processing (R16) of data are
high level requirements, but they allow to get the most of the geospatial data. For example, access to
the histogram of the data or searching tools are part of this requirement.

Requirements for Service-driven 3D Atlases 25

Nadia Panchaud

6. Implementation

To prove the feasibility of a 3D web atlas based on a service-oriented architecture, a prototype
displaying perspective views of the landscape and block diagrams is implemented using web services
and WebGL. The prototype implementation can be divided in four parts: the Web Map Service (WMS),
the 3D Web Service (Globe Capture Service GCS), the Block Diagram implementation (WebGL) and the
Graphic User Interface (GUI).
This chapter details the implementation of the prototype. It starts with the architecture of the
prototype and then explains the different components and the technologies they use. It ends with
the presentation of the prototype and its features.

6.1. Architecture
The following figure demonstrates the system architecture of the prototype. It consists of three tiers,
the data tier, the web service tier and the user interface tier. The architecture uses the SOA concept
and makes use of the advantages of using web services that communicate with the data tier and the
user interface, allowing to have a thin client – thick server system. The web services receive requests
from the user interface tier through JavaScript and then request the corresponding data from the
data repository on the servers. Finally, they get the response as an image (in this case) and send it to
the user interface for display.

Figure 16: Architecture of the prototype

6.1.1. Data Tier
The data tier contains the data themselves, organized in database and files. There is one PostgreSQL
database that holds the thematic data and the geometries for the WMS. These data come from a
previous work regarding the service-driven generation of map for web atlases (Ortner, 2011). They
originally come from the cartographic database of the Ads3 in the scale of 1:500'000 in Illustrator

User Interface Tier

Database
PostgreSQL

GUI

WMSGlobeCapture
Service

DEM

Relief

ShadersWebGL
librairies

DEM

GetTexture

image [png]

SLD

GetMap
request

GetMap
response

GetView

Panorama image

view

Block diagram

Data Tier

GetTexture

image [png]

Web Service Tier

2D Map

[svg] for 2D graphics [WebGL] for 3D graphics

Implementation 27

Nadia Panchaud

format and have been processed and converted into shapefile and then into a PostGIS database. The
following table shows which data have been selected out of that previous work for this prototype.

Table 2: List of layers used for the prototype and their name in the PostgreSQL database from (Ortner, 2011)

Thematic data from (Ortner, 2011) Layer Name for the WMS and SLD Type of data

admin_landesgrenzband_li_500k Border_line line

admin_landesgrenzband_500k Boder_band surface

admin_laender00_500k Background surface

basis_fluesse_500k Rivers line

basis_seen_500k Lakes surface

basis_staedte_500k Agglomeration surface

basis_strassen_500k Roads line

basis_wald_500k Forest surface

bevoelkerung_bz0901_500k Population_density surface

bevoelkerung_bz0901_pu Population point

geologie_500k Geology surface

verkehr_flug_verkehrsart_pu Airports point

verkehr_flug_verkehrsart_pu Airports_labels labels

verkehr_schiff_bestand_kt_pu Boat_type point

verkehr_schiff_bestand_kt08_500k Boat_density surface

Another data repository contains the relief as a raster file and the Digital Elevation Model (DEM) data
for the GCS, the 3D web service. The global DEM for the service is made up of several data sets. The
DEM for the Swiss territory is a combination, depending on zoom level, from the DHM25 (25 m grid)
and the DTM_AV (2 m grid, but only for regions below 2000 m a.s.l) (Geodata © swisstopo). The
Ferranti data set cover the area outside the national border (de Ferranti, 2012).
Furthermore, a third server holds the DEM and WebGL libraries and shaders for the generation of the
block diagram. The DEMs for the block diagram come from from the DHM25 and the DHM RIMINI
(Geodata © swisstopo). The DHM25 offers a matrix model with a 25m grid in the scale of 1:25'000 in
ASCII format. It shows the elevation (without vegetation and buildings) of Switzerland. The RIMINI
data set is DEM in the scale of 1:250'000. Both are raster files with a color value in each pixel encoding
the elevation.

28 Service-driven 3D Atlas Cartography

6.1.2. Web Service Tier
The web service tier is the core of service-driven cartography. It allows a flexible architecture, which is
accessible from thin clients.

QGIS Server (Web Map Service)
The QGIS WMS Server allows to prepare 2D thematic maps that are used as a texture in the GCS and
for the block diagrams. The QGIS Server is an open source and enhanced WMS. It supports WMS 1.3.0
and 1.1.1 implementation and styling with SLD 1.0.0, as well as cartographic extensions to SLD,
allowing to draw diagrams, patterns and custom symbols (Iosifescu-Enescu, 2011). With the help of
the plugin «Publish to Web», it is possible to directly generate the styling parameters (SLD document)
for each layer from the QGIS desktop. The QGIS map server is implemented as a FastCGI/CGI
application written in C++. It works with a web server (here Apache) that invokes the FastCGI/CGI
application. It uses QGIS as backend for the GIS and map rendering logic (Iosifescu-Enescu, 2011;
Quantum GIS, 2012). It is licensed as an open source program under the GPL license and it is
supported by the following platforms: Linux, Windows XP and MacOSX (Quantum GIS, 2012).
Through a GetMap request, the QGIS WMS accesses the data on the PostgreSQL database and return
an map image based on the size, extent and content parameters that are defined in the request. For
the symbolization, it uses the SLD document, written in XML-format, that describes the style and then
says which styles apply to which layers.

Globe Capture Service (3D Web Map Service)
As a 3D Web Service, the prototype uses the GCS developed at the Institute of Cartography and
Geoinformation at ETH Zürich. It is based on the prototype version of the web version of AdS (still in
development).
It allows to request a perspective view of any point in Switzerland. It uses a DEM and a grayscale relief
raster image to generate a simple view and additionally allows to integrate a WMS to provide other
textures. It offers the following parameters regarding the spatial navigation: Point of Interest, Yaw,
Roll, Pitch, and Distance. The Point of Interest is defined by a pair of coordinates, the Distance
represents how far the observer is from the Point of Interest. The other parameters define in which
direction the observer is looking (Yaw or heading), at which angle (Pitch or elevation) and whether it is
tilted (Roll or bank) (see figure 17). Yaw is what one does when one turns one's head to the left or the
right, pitch is when one nods and roll would be when one tilts one's head to the side.

Figure 17: Parameters of the Globe Capture Service request

Implementation 29

Nadia Panchaud

A few additional features were implemented parallel to this project. It is now possible to chose the
time of the day for the illumination of the relief, thus allowing to see the stars at night or to have
longer shadows. Moreover, the WMS layers now have an opacity parameter. The GCS offers a simple
user interface to send requests, but it is integrated within the GUI through a HTTP Get request, using
JSON encoding.
The GCS is based on osgEarth for the rendering task (see section4.1.2) and it uses the mongoose web
server, which is licensed under the terms of the MIT license. It can work as an embedded web server
library to provide web interface to applications. No external library or configuration is needed,
because launching Mongoose executable in any directory starts to serve that directory on port 8080
(Lyubka, 2012), making it practical for demos and prototype testing.
The GCS was chosen for the implementation because it was already available, albeit simple and
coarse and thus allowing to manage the time constraint efficiently. As there is no standard for 3D
web service yet, this service fits perfectly the needs for the proof of concept and could be modified to
support a standard once it becomes available.

WebGL (Block Diagram)
The block diagrams consist of blocks of certain extent of the landscape that can be turned around as
if the diagram were in the hand of the users. The prototype tests the capabilities of WebGL, which is
an API based in OpenGL Embedded Systems API (Application Programing Interface). OpenGL ES is a
royalty-free, cross-platform API for full-function 2D and 3D graphics on embedded systems, including
consoles, phones, appliances and vehicles and it enables full-programmable 3D graphics
(Khronos WebGL Working Group, 2012). WebGL allows to render 3D graphics within the browser
without any plugin by using directly the graphic card on the users' computers. WebGL uses the
HTML5 canvas element to render a scene. It is (partially) supported by all major browser (Chrome,
Firefox, Safari). The base document used as a starting point in this work has been developed at the
Institute of Cartography and Geoinformation with the help of the libraries from Google
(webgl.utils.js)19 and Brandon Jonson (glMatrix.js)20 (Bär, 2011). WebGL requests the texture from the
WMS with the help of JavaScript. Because the scale is quite larger that for the panorama view, several
styles for a same layer in WMS are defined to match the different scales.

6.1.3. User Interface Tier
The Graphic User Interface (GUI) is an essential part of the prototype because it allows the users to
interact with the maps and representations. It contains all control tools for the interactivity and
navigation. It was decided to use a GUI from a previous diploma thesis based on SVG. This GUI was
developed as a web version of the Atlas of Switzerland and thus was expressively designed for web
atlases, which is ideal for this project (Cron, 2006). This GUI uses JavaScript for interactivity and
navigation and is based on the framework offered on carto:net (Neumann and Winter, 2011). It was
chosen because of its flexibility and easy adaptability, thus allowing to expand it in order to offer 3D
views and block diagram. Additionally, SVG does not require any plugin and is supported by all major
browsers (Chrome; Firefox, Safari; and Internet Explorer only from version 8 on and with a plugin).

30 Service-driven 3D Atlas Cartography

19 Available under http://code.google.com/p/webglsamples/source/browse/book/#book%2Fextension (retrieved on
25.05.2012)

20 Available under a BSD-like license on https://github.com/toji/gl-matrix (retrieved on 25.05.2012)

6.2. High-level Workflow
This section explains the flow of information between the data repositories, the web services and the
GUI for the panorama views and for the block diagrams.

6.2.1. The Panorama View
From the GUI, the user activates the panorama
function (getGLobeCapture) by interacting with an
element on the screen, such as a tab or a button. The
panorama function sends a 1 request with the
parameters regarding the camera settings and the
layer information to the GCS. It processes the
information regarding the coordinates of the point of
interest, as well as for the yaw, the pitch and the
distance to the point and sends a 2 request to the
database to get the corresponding data. It receives an
3 image (png) of the panorama view made of the

combination of the DEM and a relief. Then, the GCS

sends a 2 request to the QGIS Server to obtain the
texture to overlay on the panorama. The WMS sends a
3 getMap request to the database to obtain the

data. The data are then symbolized according to the
SLD document and sent back to the WMS 4 , which
sends it further to the GCS 5 . The GCS sees the WMS
layer as an additional layer, on the same level as the

shaded relief image (see appendix V). This step requires to define the following parameters of the
WMS request: LAYERS, STYLES, SRS, TRANSPARENT, FORMAT (image). A few other are needed by the
GCS to render the panorama: FORMAT (layer), OPACITY and URL. From the relief as well from the DEM
and the map texture, the GCS renders the panorama view and sends it to the GUI for display 6 .
Every modification of the request parameters from the GUI, such as the distance to the point of
interest or the angle of view, sends a new request to the GCS and thus triggers again the entire flow
of information.

6.2.2. The Block Diagram
The block diagram function works differently because the WebGL technology is quite different from
SVG and web services. WebGL models can be integrated within the GUI either using the <canvas> or
the <iframe> element from HTML5, both requiring the <foreignObject> tag in the SVG document. The
<canvas> is used to draw directly the WebGL Context within the allotted space in the GUI, whereas
the <iframe> defines an inline frame allowing to include external element, such as a HTML page in
which the same canvas element is used. The option using directly the canvas element is chosen.

Database
PostgreSQL

GUI

WMSGlobeCapture
Service

DEM

Relief

GetTexture

image [png]

SLD

GetMap
request

GetMap
response

GetView

Panorama
image

View

Panorama
request1

2

2

3

3

4

56

[svg]

Figure 18: Flow of information for the panorama
view mode

<foreignObject id="glforeignObject_canvas" x="25" y="25" width="700" height="700">
! <canvas id="glCanvas" width="700" height="700" xmlns="http://www.w3.org/1999/xhtml"></canvas>
</foreignObject>
<foreignObject id="glforeignObject_iframe" x="25" y="25" width="700" height="700">
 <iframe width="700" height="700" src="http://example.com" xmlns="http://www.w3.org/1999/xhtml"/>
</foreignObject>

Code Extract 1: iFrame and canvas elements

Implementation 31

Nadia Panchaud

The block diagram function sends a 1 request with the parameters regarding the texture and the
location of the block diagram (see figure 19). This function calls upon the a DrawScene function to

draw the WebGL context and the block diagram 2 , because WebGL needs a Context in which the
objects are drawn. Once the Context is called, the
rendering pipeline works as follow (see figure 20):
First, vertex arrays containing the vertices attributes,
such as their position, texture and how they react to
illumination are created. They are then sent to the
GPU (Graphics Processing Unites) by putting them
into vertex buffers while calling a function to draw an
object. Then, WebGL processes the data that the user
previously defined as attribute (now within the
buffers) and uniform variables (that are used for the
projection and the model view matrices). All of these
are passed to the vertex shader. It calls the vertex
shader for each vertex with the appropriate
attributes, projects them and puts them into varying
variables, one of them giving the position of the
vertex. The WebGL then calls the fragment shader for
every pixel without a vertex and fills them through a
linear interpolation. Finally, everything is assembled
within the frame buffer, which is eventually displayed
on the screen (Caballero, 2011; Thomas, 2012). For this
prototype, the texture comes from a WMS as an
image (steps 2 3 4 5 , same as in section 6.2.1)

which is used as a parameter in the loadTexture function of the block diagram (see appendix IV).

Figure 20: WebGL rendering pipeline, modified from (Caballero,2011; Thomas, 2o12)
* user input

Then the texture is applied on the block diagram and sent to the GUI for display in the browser. Once
the texture is applied, there is no need to send a new request to the WMS for every spatial navigation
step. Although, if the user wants to change the texture, a new request has to be sent.

6.3. Presentation of the Prototype
6.3.1. General Description
The prototype is built on an existing GUI, of which the basic functionalities and their
implementations are fully described in (Cron, 2006). The prototype, at the moment this thesis is
written, has three different modes: 2D maps (which is not treated here), panorama view and block
diagram. The following figure shows the consistency between the GUI of the three modes. The
different tabs on the left side allow for the access to the legend, layers, analysis and information,
when they are available. The bottom part is reserved for the spatial navigation and possible
information about the features (only for 2D maps mode at the moment), as well as general
functionalities, such as language choice, backward and forward.

Database
PostgreSQL

GUI

WMS

ShadersWebGL
librairies

DEM

SLD

GetMap
request

GetMap
response

Block
diagram

GetTexture

image [png]

[WebGL]

Block diagram
request/response1 6

2

3

4

5
2

[svg]

Figure 19: Flow of information for the block diagram
mode

Javascript
Primitive assembly /

rasterization Frame buffer

Uniform
variables

Buffers
Attributes

Varying
variables

Vertex
 arrays*

Vertex
shader*

Fragment
shader*

Modified
varying

variables

32 Service-driven 3D Atlas Cartography

The 2D Maps mode uses a main map and a reference map for the navigation. Due to the 3D
component, the main map is not useful in this form for the other modes, however, the reference map
is essential for location purpose in the other modes. The panorama image and the block diagram each
use an additional nested <svg> element in the DOM, where the image of the panorama and the
WebGL scene are appended and drawn, respectively.
The Panorama View interface offers several tools to navigate spatially, thematically and temporally. It
allows to chose the theme that is overlaid on the relief, the period of the day and the location of the
point of interest. Because this is a prototype, only four themes are available with checkboxes,
although one can imagine using a drop list menu for a more comprehensive web atlas, as it is
suggested for the 2D Maps mode (Cron, 2006). The legend panel is right below the thematic
navigation box. Both boxes can be move around, as well as close and open at will.
The temporal navigation offers the day and night option for the illumination and could be extended
by allowing to chose different seasons and different times of the day for instance. The spatial
navigation tools cover more options. First, one can choose the point of interest by clicking on the
reference map as well as define the different parameters of the view, such as the angle of view
(pitch), the direction of view (rose wind) and the distance to the point of interest, which can be seen
as a zoom function). When only going over the reference map with a mouse pointer, the coordinates
of the mouse are also displayed. Additionally, a red dot shows the location of the point of interest on
the reference map.

Figure 21: The three modes of the prototype; top: 2D maps, left: panorama view, right: block diagram

Implementation 33

Nadia Panchaud

The Block Diagram interface offers a selected choice of locations and themes to be displayed. A drop-
down list allows the users to pick the location, which is then displayed on the reference map with a
red frame. By clicking on the block, the user can make it turn around in all three directions, as well as
zoom in and out. The thematic navigation and the legend are located at the same place as for the
panorama and offer the same functionality.

Figure 23: Design of the GUI for the block diagram mode and its navigational functions

Figure 22: Design of the GUI for the panorama view mode and its navigational functions

34 Service-driven 3D Atlas Cartography

6.3.2. Symbolization with WMS
WMS uses a SLD document containing rules on how to symbolize the geographic features located on
the database. The SLD document is generated by the Publish to Web plugin in QGIS and is added to
the server. Some options available in the SLD specifications are not offered in the symbolization
toolbox from QGIS and thus have to be added manually when needed. For instance, the scale
dependent symbolization or the minimal size for graduated symbols. It is also necessary to specified
the EPSG (coordinates system, here 21781 for CH1903/LV03, the Swiss coordinates system) for each
layer within the SLD. This work uses the UserStyle element to define the style of the layers. Filters are
used to assigned symbolization parameters, such as fill and stroke, to the different features based on
their attributes (or properties).

Code Extract 3: Example for the symbolization of alluvial deposits (Alluvionen) with SLD

6.3.3. Technical Aspects
The index.svg file, containing some JavaScript and comprising the main elements of the GUI, is
extended in two ways. First, the instances for the interaction in the panorama and block diagram
modes, such as sliders, checkboxes and buttons, are declared with the other interactive tools already
present in the GUI at the beginning of the file. Then the shaders files for the block diagram are added
as standalone script at the beginning as well (for details, see appendix VII).
Table 3 describes the JavaScript functions that have been implemented for the two 3D modes. One
principal function get_maps() plays the role of the switch button between the different modes. Then,
each mode has a main function responsible to display and hide the interactive tools necessary and to
render the panorama view or the block diagram. These two main functions, getGlobeCapute() for the
panorama view and getBlockDiagram() for the block diagram, call upon other functions that deal with
the thematic navigation , and some of the spatial navigation tools.

<UserLayer xmlns="http://www.opengis.net/sld">
 <Name xmlns="http://www.opengis.net/sld">Geology</Name>
 ...
 <UserStyle xmlns="http://www.opengis.net/sld">
 <Name xmlns="http://www.opengis.net/sld">Geology</Name>
 <FeatureTypeStyle xmlns="http://www.opengis.net/sld">
 <Rule xmlns="http://www.opengis.net/sld">
 <Filter xmlns="http://www.opengis.net/ogc">
 <PropertyIsEqualTo xmlns="http://www.opengis.net/ogc">
 <PropertyName xmlns="http://www.opengis.net/ogc">ads_name</PropertyName>
 <Literal xmlns="http://www.opengis.net/ogc">Alluvionen</Literal>
 </PropertyIsEqualTo>
 </Filter>
 <PolygonSymbolizer xmlns="http://www.opengis.net/sld">
 <Stroke xmlns="http://www.opengis.net/sld">
 <CssParameter xmlns="http://www.opengis.net/sld" name="stroke" >#646464</CssParameter>
 <CssParameter xmlns="http://www.opengis.net/sld" name="stroke-width" >0.1</CssParameter>
 </Stroke>
 <Fill xmlns="http://www.opengis.net/sld">
 <CssParameter xmlns="http://www.opengis.net/sld" name="fill" >#f8f8bd</CssParameter>
 </Fill>
 </PolygonSymbolizer>
 </Rule>
 ...
 </FeatureTypeStyle>
 </UserStyle>
</UserLayer

Implementation 35

Nadia Panchaud

Table 3 also explains the role of each function as well as its location in the three different JavaScript
files that are added to the original GUI. Each function has a name and might have parameters, that
are found in the brackets.
Few other modifications to the original GUI are necessary. In order to get the coordinates values from
the reference map into the request for the panorama view, the event-listener «onclick» is added to
the navigation.js file from the original GUI. It allows to capture the coordinates that are displayed on
the mouse click and to send the request with the corresponding coordinates of the point of interest.
The design is updated to the latest stand of the Atlas of Switzerland, on which it is based: the color
scheme is change to gray and the symbols for the theme categories are updated, as well as the
division of the different categories available.

Table 3: Extensions to the GUI, functions and description

Element and file
name

JavaScript functions Description

Navigation between
views
(get_map.js)

Panorama
(getGlobeCapture.js)
Panorama
(getGlobeCapture.js)
Panorama
(getGlobeCapture.js)
Panorama
(getGlobeCapture.js)
Panorama
(getGlobeCapture.js)
Panorama
(getGlobeCapture.js)
Panorama
(getGlobeCapture.js)
Panorama
(getGlobeCapture.js)
Panorama
(getGlobeCapture.js)

Block diagram
(getBlockDiagram.js)
Block diagram
(getBlockDiagram.js)
Block diagram
(getBlockDiagram.js)

Block diagram
(webGL.js)

get_maps()
Change from one type of view to another; calling
of the other functions needed to render the view
itself

getGlobeCapure()
Removal of unnecessary tools; display of
necessary tools for the panorama view; calling of
the getImageGC() function

getImageGC()
Request of the panorama view to the Globe
Capture Service; updating of the parameters
display in the GUI

setDistanceTo(changetype,id,value)
Change of the distance to the point of interest;
calling of the getImageGC() function

setPitchTo(changetype,id,value)
Change of the pitch from the point of interest;
calling of the getImageGC() function

setMaxMin(id)
Setting of the distance and pitch to their
maximal or minimal values; calling of the
getImageGC() function

setYawTo
(groupId,evt,buttonState,buttonText)

Change of the yaw from the point of interest;
calling of the getImageGC() function

setDaytime(id,selectedId,labelText)
Change of the time parameter; calling of the
getImageGC() function

setPointOfInterest(evt)
Change of the location of the point of interest;
calling of the getImageGC() function

setTheme(id,selectedId,labelText)
Change of the theme; calling of the
getImageGC() function

getBlockDiagram()
Removal of unnecessary tools; display of
necessary tools for the block diagram view;
calling the getDiagram() function

setThemeBD(id,selectedId,labelText)
Setting of the theme for the block diagram;
calling the getDiagram() function

getDHM(groupId,indexNr,value)
Setting of the DEM for the block diagrams;
calling the getDiagram() function

getDiagram() Draw the scene

36 Service-driven 3D Atlas Cartography

7. Discussion of Results

This section discusses what has been achieved during this Master thesis, starting with the analysis
and the general implementation of the prototype. Then, it goes over the different weaknesses and
advantages of the prototype regarding 3D visualization for an atlas, while putting into light possible
solutions to solve some of the issues with the different technologies that are implemented.

7.1. Overview
The literature review shows that atlases have evolved with the technologies available at the time,
from the paper version, to digital desktop application and now online atlases. Presently, the
technologies and specifications enable to build service-driven 3D atlases, although they are rather at
a beginning stage. 3D geovisualization offers advantages for shape understanding and orientation
tasks, but these advantages cannot be fully used in service-driven application yet, because of
specifications and standards issues. On the subject of atlas functionalities, the review shows that a
set of functions are commonly found in all interactive atlases, 3D atlases included: general functions,
spatial and thematic navigation. The technologies review demonstrates the large number of 3D
graphics formats and specification and the lack of standards when it comes to 3D web services.
The analysis of the literature about 3D atlases and geovisualization as well as available specifications
and technologies lays the foundations for the definition of the requirements. Sixteen requirements
for service-driven 3D atlases are defined and explained. The system requirements are the foundations
on which the other requirements should be built because the choice of the system logic can hinder or
even prevent the fulfillment of the later ones. The requirements regarding the visualization and the
interactivity can be fulfilled at different level depending of the target group and the stage of
development of the atlas. These requirements are important guidelines and goals for the
development of solutions that are sustainable, flexible and extensible and most importantly easy to
use. Keeping these requirements in mind, a prototype is developed and shows that service-driven 3D
atlases are possible. Not all requirements are fulfilled to their maximum within this work, however it
shows the main issues and future challenges in the field of service-driven 3D atlases. With future
developments in the field, additional requirements could join the ones defined in this work.

7.2. Advantages and Weaknesses of the Used 3D Technologies
7.2.1. Combination of Globe Capture Service and QGIS Server
One of the main advantage of using a 3D web service for perspective view is its very simple output: an
image in png-format. It is a standard format for image that allows for transparency and relatively
small file size, when considering that most screen displays have a resolution of 72 dpi. It is supported
by any browser and does not require any plugin to display. It can be accessed by a thin client without
any problem thanks to the absence of any additional processing engine needed to render the view. It
can thus be envisaged to have a version for mobile devices as well.
Once the web service is set up, it can be used for different goals and provides not only the atlas with
perspective view, but also a geoportal, for instance. However, the lack of standards for 3D web service,
being for images or features, means that interoperability and integration in other systems cannot be
guaranteed. It supports WMS standards, but vice versa with other standards is not true. Nevertheless,
once a standard is agreed upon, the Globe Capture Service can be modified to match it. Depending on

Implementation 37

Nadia Panchaud

the characteristics of the future standard for W3D or WVS, the standardization phase might however
be long.
The combination of a 3D web service/Globe Capture Service, providing perspective views, and a WMS,
providing the texture, shows substantial advantages regarding the symbolization of surfaces and
lines, such as land use and road network or geological formations (see figure 24). All types of
thematic data related to or in relation with the landscape and the slope can benefit from a 3D
geovisualization.

Questions regarding the usefulness of displaying thematic data such as rate and percentage on a
2.5D or 3D landscape can be raised, though. No studies have been found on whether classical 2D maps
would be here more effective for the understanding of the spatial phenomenon and relations than 3D
geovisualization (see figure 24 and 25).
A clear downside of the GCS – WMS combination is the fact that is not well adapted for point
symbolization and labeling. Indeed, icons, symbols, and diagrams are flattened onto the landscape
relief and often distorted (see figures 25). They might also be hidden by the relief.
Another weakness of the GCS lies in the absence of 3D symbols, which is one of the attractive quality
of 3D visualization. A solution could be to use billboards for symbols. Billboards are 2D or 3D symbols
for point features that «float» above the point they symbolize and that are always oriented toward
the camera. These are found in Google Earth, for instance.

Figure 24: Panorama view, left: base map, right: geology map

38 Service-driven 3D Atlas Cartography

Due to the fact that it is a prototype, it still has many performance issues. The GCS takes some time
and several requests to load the image at full resolution. Once it is loaded, it is not a problem any
more for changing the camera and coordinates settings. However, every time the view requires a new
combination of layers, the same problem arises due the service architecture. A workaround (but not
an optimal solution) to fix it consists of running one server per map or combination of layers. This
only works for this prototype, because just a few example layers are offered. Ideally, each layer should
be queryable independently from the others. A long-term solution would be to redefine the request
parameters and to optimize the loading process of the GCS. It is to expect that once the standards for
WVS and W3DS are set, the communication and interoperability issues between these 3D web
services and WMS be resolved. This would also help regarding the user styling requirement. There is
no user styling option in this prototype. However, styling options could be implemented through a
user interface allowing the user to define new styling parameters that would be then sent through
the SLD document. It is also common to use different symbolization to adapt to the scale and
although the Web Map Service can deal with it, the actual combination with the GCS and its tiling
mechanisms does not offer a satisfying solution yet. The resolution of the tile and where they cut
depends on several factors. By increasing the size of the tile, there is more chance (but no certainty)
that the user only sees one tile, but the loading of the image is slower. Depending on the scale
threshold in which a tile is found, the resolution of the image can vary and thus messing up the scale-
based symbology.
It is to expect that, when the standards for 3D web services are available, they be fully compatible
with WMS and SLD. The multiple and coordinated views were not implemented in this prototype, but

Figure 25: Panorama view, top: population density (choropleth) and number of inhabitants (sphere), left: diagram
for boat types, right: airport symbol and labels on the base map

Implementation 39

Nadia Panchaud

it would be feasible by sending two requests with the same extent, but different layers and style
content.
JavaScript allows for a wide range of interactive tools, from spatial to thematic navigation. However,
the function that display additional information when going over a feature with the mouse (tooltips
or highlight effects, for example) are not directly possible in this case, because only the representation
of the features are displayed, and not the features themselves. As the client only receives the
representation, as a picture, from the server, it is also not possible to process or query the data directly.
The spatial navigation could be more intuitive. Although the panorama mode offer many navigation
tools, it lacks for instance the panning tools which is really practical and highly intuitive. It could be
implemented by taking into account the perspective view and calculating the approximate position
of the center point after a panning action.

7.2.2. Combination of WebGL and QGIS Server
WebGL itself is part of the GUI, however the block diagrams are web-based because they request the
texture from the WMS. It does not need any plugin, while being supported by all major browser
(except IE). However, WebGL is not fully cross-platform as the rendered output is not always exactly
the same in the different browsers. Another issue that might compromise the future of WebGL lies in
the fact that it is not supported by Microsoft (for security reasons) and is not available for the public
on iOS 5 devices and likely not on iOS 6 devices too21.
Regarding the interoperability and integration, there is still a few issues, especially with SVG. Whereas
SVG is by definition scalable, the canvas element does not rescale with the browser window and its
placement within the GUI is not optimal. The canvas element positions itself above all other
elements, no matter where the element in the DOM is and does not stay within a SVG frame or
window when scaling the browser window. The loadProject function could be adapted to recalculate
the size and position of the canvas element after each resize of the window, but it s only a fix and
does not solve the problem entirely. One could also imagine using an iframe element, but the same
problem arise in the prototype as with the canvas element.
The number of vertices in the browser is limited, which means that for a high resolution DEM, the
extent has to be smaller: higher resolution means more point per surface. For instance, a DEM with a
25m grid allows to draw a block diagram up to 6'300 x 6'300 m2, whereas the RIMINI DEM with a grid
of 250m allows to draw a block diagram up to 63'000 x 63'000 m2. For a higher resolution and bigger
extent, it is possible to draw several blocks next to each other. It then would require to adjust the
navigation function to make them move, scale and rotate as one.
WebGL is a low-level API and thus does not provide for high level of abstraction, but the data could be
created in a high-level application and then transferred into WebGL.
Due to the limitations on the vertices number, the block diagrams display at a rather large scales.
Because, the WMS is identically used for the texture, the same down sides appear: symbols and labels
are distorted and flatten onto the surface, which is not an ideal representation (see figure 26).
Regarding 3D symbolization, WebGL has an advantage over a combination of a WMS with a 3D web
service, because the 3D symbols can be directly realized with WebGL (see figure 27).

40 Service-driven 3D Atlas Cartography

21 http://caniuse.com/webgl

Remarks regarding user styling, and multiple and coordinated views from the panorama view mode
also apply for the block diagrams. On one hand because the symbolization comes from the same
WMS and on the other hand because the coordination of different block diagrams could be done by
linking the navigation function of both diagrams.
Interactivity with WebGL has a significant potential because WebGL also uses JavaScript. For instance,
tooltips have been implemented in an anatomy project22, but still in beta version and they should be
applicable to cartographical needs. Highlights and retrieval of thematic information with mouseovers
and click could also be conceivable. Furthermore, the spatial navigation around the block diagram is
very intuitive. The user can rotate the block with the mouse and zoom in and out easily.
Regarding data processing and query, WebGL might have an advantage against the use of strict
image, because it already works with attributes. However, it has not been tested yet.

Figure 26: Block diagrams, left: base map, right: population density and inhabitants

Figure 27: 3D symbolization of the buildings in Andermatt with WebGL (Friedli, 2012)

Implementation 41

Nadia Panchaud

22 http://radeberger.cs.uni-magdeburg.de/~sbirr/web3D/showcase/index.php?site=start

7.2.3. Summary
The following table describes the advantages and weaknesses of the two modes, as well as the
expected results with fully standardized WVS and WMS. It takes each requirement defined in chapter
5 and states whether it can be considered as an advantage (dark green = tested in the prototype, light
green = theoretically possible), an area where improvements are needed (orange) or a weakness (red).

Table 4: Assessment of the different requirements for 3D geovisualization systems

GCS +
WMS

WebGL
+ WMS

WVS +
WMS

R1: system oriented architecture and thin client

R2: no plugin

R3: cross-platform

R4: interoperability, integration

R5: extensibility and update

R6: reusable and robust

R7: open source

R8: support for massive geodata

R9: dynamic geodata

R10: higher level of abstraction

R11: high quality and effective visualization

R12: user styling options

R13: coordinated and multiple views

R14: interactivity

R15: intuitive navigation

R16: data query and processing

?

?

?

?

The main weakness of the GCS is found by the interoperability and integration requirements. Indeed,
there is no standard regarding 3D web service or Web View Service yet and it hinders the full
integration of the WMS. For instance, the GCS does not allow for an easy and flexible change of layer
combination, preventing to fully apply the cartographic principle that states that each layer should be
independent. Here, only predefined combinations of layers can be used. Additionally, the definition of
different symbolizations based on different scales in WMS in not taken into account by GCS due to
how the perceptive view is generated. There are also some issues regarding the performance,
especially in the area of speed of display and resolution of the image. However, these issues can be
solved by optimizing the request process.
Regarding WebGL, the main weakness beyond the size limitations is the lack of wide support among
popular browsers. Only Chrome offers full support, whereas the latest versions of Safari, Firefox and
Opera only offer partial support. The support for mobile devices is even lower23. WebGL also encounter
some issues with interoperability and integration with SVG.
Requirements 12, 13 and 16 have not been tested in the prototype, but they should theoretically works.
Styling options and retrieval of information about the features are already possible with WMS (see
section 7.3) and coordinated views could be done by requesting to perspective view with the same
spatial parameters while modifying the others.

42 Service-driven 3D Atlas Cartography

23 http://caniuse.com/webgl

The last column shows the expected capabilities of a combination between a WMS and a WVS, when
the standard is available. All issues of interoperability and reusability should be solved, but it stays the
question regarding performance for cartography visualization because they depend on the actual
implementation of the standard. It can be seen that a standard is highly needed because it will
resolve the major issues of integration with the 2D WMS for the texture, with any external sources of
data and any other web services that could be needed, such as a WPS or hypothetical cartographical
web services for symbolization.

7.3. Recommendations for the Architecture
The prototype in this work tested two different approaches to service-driven 3D atlas cartography.
This section provides possible solutions to resolve their different weakness points and highlights the
important differences between the two approaches.
The first approach solely based on web services puts less strain on the the GUI as the WebGL
approach, which means that it is better suited for projects that require very light clients. The
approach of combined web services has two major drawbacks: the 3D web service, Globe Capture
Service, is not standardized and the display of symbols is not adequate for cartographic use. There are
great expectations on the coming of a standard for 3D web services and it has been promised to be
agreed upon soon. This would solve the problems regarding the interoperability, especially with other
web services. It raises the question of how much resources should be put into improving the GCS
against waiting for a standard that can be available tomorrow as well as in one year. As it is expected
to see a significant evolution in the world of 3D web services, it might be worth to wait until the
standard is available in order to implement a long-term and extensive project.
The lack of ability to display symbols properly on the landscape can be seen as the main obstacle to
the use of web service for 3D cartography. This could be solved by using a web service delivering
georeferenced billboards (see figure 28). Such billboard are not implemented yet, but should
theoretically work with osgEarth, on which GCS is based and which could be the input data for a
standardized 3D web service. These symbols would be always turning toward the camera and would
not be subject to the relief, thus avoiding foreshortening effect. 2D symbols such a bar charts and
billboards in 3D geovisualization environment have show their usefulness (Bleisch, 2011).

Figure 28: Billboards - a possible solution for 2D and 3D symbols with the web service approach

Implementation 43

Nadia Panchaud

Regarding the interactivity with the image displaying the relief, it can be imaged to used the request
GetFeatureInfo from the WMS standard that delivers feature information by identifying a point on
the map via its pixel location. Due to the third dimension, it would require ray-tracing to define the
actual location of the screen pixel on the relief. Another possibilities is to use the principle in WPVS++
using image to encode information, but it seems that the OGC is going away from that idea.
The approach with WebGL demands more from the client and one has to be aware that it gets
complicated to render large parts of landscape at high resolution due to the limitation of 64k
vertices. Nonetheless for large scale representation, it allows to render the landscape and any
symbolization with the same technology. It would be perfectly adapted for small and well defined
areas. In atlases, this could be specific points of interest that require their own map for instance.
WebGL has a rather complicated pipeline and programming interface, thus one might consider
creating the content in another format before exporting it to WebGL. It is possible to prepare the
geodata with the help of another software and then to display them with WebGL in the browser. It
was demonstrated that it is possible to use Sketch Up to create the 3D content, then to export in into
the COLLADA exchange format, which can be loaded into WebGL (Friedli, 2012).
In a SOA, it is always possible to add more web services with different functions and because symbols
and labels are not displayed in a satisfactory way with WMS, creating a symbols web service or even a
3D symbols web service goes in the direction of a fully wed-based atlas.

44 Service-driven 3D Atlas Cartography

8. Conclusions and Outlook

In this last chapter, the conclusions of this Master thesis are drawn and outlook in the future
developments in the area of service-driven 3D atlas cartography is given.

8.1. Conclusions
This Master thesis shows that service-driven 3D atlas are doable and that a service-oriented
architecture bring benefits for 3D atlases.
The first part reviews the literature and existing digital 3D atlases about atlas functionalities and 3D
geovisualization and it gives an overview of the available specifications and graphics formats for 3D
visualization. It is found that 3D visualization can represent certain advantages over 2D
geovisualization, especially in the area of shape understanding and task orientation. Furthermore, it
can be said that the multitude of 3D graphics formats and technologies renders any attempt at
standardization or interoperability quite tedious.
This review process enables the definition of sixteen requirements for service-driven 3D atlases based
on two categories: system requirements that are non-specific to 3D geovisualization and
requirements about visualization and interactivity that are specific to atlases and 3D geovisualization.
Then, this thesis explores some possibilities for service-driven 3D atlas and shows that existing
specifications can be used to implement a prototype based on the above mentioned requirements.
The concept of using a 3D web service, in combination with a Web Map Service for the texture, to
display a panorama view is valid, although it shows its limitation for 3D symbols and point symbology
in general. The Web Map Service and its extension for cartographic symbolization allow to display
complex texture in the landscape. The use of WebGL for block diagram with a Web Map Service deals
with the same issues regarding point symbology. In addition, it encounters a trade-off between the
extent of the block diagram and its DEM resolution.
Nevertheless, as long as there is no standard for a 3D web service, issues of interoperability and
integration will necessary arise. Web atlases could highly benefit from a service-driven 3D atlas that
would allow not only access to the spatial data even from light client, but also access to external data
sources. The latest offers interesting possibilities regarding the access to the data representation
versus the acquisition of the actual data, which is often expensive.
Specifications for 3D geovisualization, especially for 3D web services, are not fixed yet and
interoperable solutions are not easy to define. The development of service-driven atlas could use the
definition of standards for 3D web services as soon as possible.
The performance, in term of speed and visual quality, of the prototype does not reach the one of
desktop application yet. However, the performance was not a criteria for this work and it is
reasonable to expect that the prototype could be highly optimized, especially when standards are
available.

8.2. Outlook
The use of web services delivering the different parts of the visualization definitely goes in the
direction of the actual tendency of devices with little processing capacity combined with all-
streaming or online applications. It is to be expected that more and more atlases go online.
Furthermore, the attractiveness of 3D atlas is not just a trend effect; 3D visualization does bring real
advantages for geodata. In addition, it allows for 3D symbology and a whole new world of possibilities

Conclusion and Outlooks 45

Nadia Panchaud

for point symbolization. Thus, atlases should not overlook what 3D geovisualization can bring for
their future developments.
Although it is possible to develop a service-driven 3D atlas without standards (for instance with
proprietary software or in-house development), the availability of standards and their use highly
simplify the integration and interoperability processes not only within the architecture of the atlas,
but also for external applications or user data. A full-fledged service-driven 3D atlas using standards
might also prove itself more robust and interoperable in the long run. The combination and chaining
of web services allows for complex workflows and they can be hindered by the lack of interoperable
solutions if no standards are available. For instance, this prototype cannot be said to be a full-fledge
service-based 3D atlas because it does not offer a satisfactory solution for point and label symbology
and because it does not have access to DEM on the fly for block diagrams. Web services delivering 3D
symbols, billboards or DEM on the fly are a logical step toward this direction.
Regarding WebGL, it is important to follow its development and its support in the future, because its
capability for large-scale block diagrams is attractive and could be used once cross-platform issues are
solved. The use of WebGL for 3D objects is also interesting and should be further explored. At the
moment, WebGL is not an ideal solution for a complete atlas, but it could play specific roles, such as
3D objects and symbols or local geovisualization of specific spatial phenomenon.
This work did not explore the virtual globe in its implementation section, but the profusion of virtual
globes that are being developed shows the interest for this solution as well. They might be relevant
for world atlas, but maybe less for national atlas.
The use of 3D geovisualization for thematic data is rather new and a next challenge is to assess the
strengths and weaknesses of panorama view,s block diagrams and virtual globes for thematic
representation. Furthermore, the perception of quantitative and qualitative data visualized on a 3D
landscape should be explored, as well as its meaning for the understanding and knowledge building
processes of the users.

46 Service-driven 3D Atlas Cartography

Bibliographic References

Alonso, P. G. (1968): The First Atlases. Cartographica: The International Journal for Geographic
Information and Geovisualization, 5(2), 108-121.

Altmaier, A., and T. H. Kolbe (2003): Applications and Solutions for Interoperable 3d Geo-Visualization.
Proceedings Photogrammetric Week. Wichmann Verlag. Stuttgart. 253-267.

Andrienko, G., N. Andrienko, J. Dykes, D. Mountain, P. Noy, M. Gahegan, J. C. Roberts, P. Rodgers, and M.
Theus (2005): Creating Instruments for Ideation: Software Approaches to Geovisualization. In:
J. Dykes, A. M. MacEachren and M.-J. Kraak (Ed.) Exploring Geovisualization. Elsevier Ltd. 103-125.

Autodesk Inc. (2012): Autodesk FBX - Data Interchange Technology. http://usa.autodesk.com/fbx/
(retrieved on 12.06. 2012).

Bär, H. R. (2011): Übungsmaterial zur Vorlesung "Geovisualisierung". Place: Institut für Kartografie und
Geoinformation, ETH Zürich.

Bär, H. R., and R. Sieber (1997): Atlas der Schweiz – Multimedia Version : Adaptierte GIS-Techniken und
qualitative Bildschirmgraphik. In: Grünreich and Dietmar (Ed.) GIS und Kartographie im
multimedialen Umfeld. Bonn. Kirschbaum Verlag GmbH.

Beard, D. J., H. R. J., M. G. Nicoll, and D. O. Edge (2005): 3D Wep Mapping – 3D Geoscience Information
Online. Proceedings SSC 2005 Spatial Intelligence, Innovation and Praxis: The National Biennial
Conference of the Spatial Sciences Institute. Spatial Sciences Institute. Melbourne.

Behr, J., Y. Jung, T. Drevensek, and A. Aderhold (2011): Dynamic and interactive aspects of X3DOM.
Proceedings 16th International Conference on 3D Web Technology. ACM. Paris, France. 81-87.

Bleisch, S. (2011): Evaluating the appropriateness of visually combining quantitative data
representations with 3D desktop virtual environments using mixed methods. Doctoral
Dissertation, City University London.

Bleisch, S., and J. Dykes (2006): Planning Hikes Virtually – How Useful are Web-based 3D
Visualizations? Proceedings GIS Research UK 14th Annual Conference. Nottingham, UK.
313-318.

Bleisch, S., and S. Nebiker (2008): Connected 2D and 3D Visualizations for the Interactive Exploration of
Spatial Information. The International Archive of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XXXVIII(B2), 1037-1042.

Borchert, A. (1999): Multimedia Atlas Concepts. In: W. Cartwright, M. P. Peterson and G. Gartner (Ed.)
Multimedia Cartography. Berlin Heidelberg. Springer Verlag. 75-86.

Brodlie, K. W., et al. (2007): Adaptative Infrastructure for Visual Computing. Computer Graphics Forum,
23(2), 223-251.

Caballero, L. (2011): An Introduction to WebGL. http://dev.opera.com/articles/view/an-introduction-to-
webgl/ (retrieved on 23.05 2012).

Bibliographic References 47

Nadia Panchaud

Collada Community (2011): COLLADA - Digital Asset and FX Exchange Schema. https://collada.org/
mediawiki/index.php/COLLADA_-_Digital_Asset_and_FX_Exchange_Schema (retrieved on
12.06. 2012).

Cron, J. (2006): Graphische Benutzeroberflächen interaktiver Atlanten: Konzept zur Strukturierung
und praktischen Umsetzung der Funktionalität. Diplomarbeit, Hochschule für Technik und
Wirtschaft Dresden, Dresden, Germany.

Dahlström, E., P. Dengler, A. Grasso, C. Lilley, C. McCormack, D. Shepers, J. Watt, J. Ferraiolo, J. Fujisawa,
and D. Jackson (2011): Scalable Vector Graphics (SVG) 1.1 (Second Edition). http://www.w3.org/
TR/SVG/ (retrieved on 10.04. 2012).

de Ferranti, J. (2012): Digital Elevation Data. http://www.viewfinderpanoramas.org/dem3.html
(retrieved on 06.06. 2012).

de Vries, M., and S. Zlatanova (2004): Interoperability on the Web: The Case of 3D Geo-Data.
Proceedings IADIS International Conference e-Society. Avila (Spain). 667-674.

Döllner, J. (2005): Geovisualization and real-time 3D computer graphics. In: J. Dykes, A. M. MacEachren
and M.-J. Kraak (Ed.) Exploring Geovisualization. Amsterdam. Elsevier Ltd.

FreeWRL (2012): FreeWRL/FreeX3D Home Page. http://freewrl.sourceforge.net (retrieved on

Friedli, R. (2012): Topographische 3D-Signaturen: Gestaltung und Implementierung. Projektarbeit
Masterstufe, ETH Zürich, Zürich.

George, R. (2006): Scalable Vector Graphics Interfaces for Geographic Applications. In: E. Stefanakis, M.
P. Peterson, C. Armenakis and V. Delis (Ed.) Geographic Hypermedia – Concepts and Systems.
Heidelberg. Springer Verlag.

Hagedorn, B. (2010a): Web View Service Discussion Paper. OpenGIS Discussion Paper, Open Geospatial
Consortium. http://portal.opengeospatial.org/files/?artifact_id=37257.

Hagedorn, B. (2010b): Web View Service, an Interactive Image-Based 3D Portrayal Service: Potentials.
http://www.webviewservice.org/potentials (retrieved on 20.03. 2012).

Hagedorn, B., D. Hildebrandt, and J. Döllner (2010): Towards Advanced and Interactive Web Perspective
View Services. In: T. Neutens and P. D. Maeyer (Ed.) Developments in 3D Geo-Information
Sciences, Lecture Notes in Geoinformation and Cartography. Berlin Heidelberg. Springer Verlag

Hagedorn, B., A. Zipf, A. Schilling, and S. Neubauer (2008): 3D Portrayal Services – Use Cases. OpenGIS
Discussion Paper, Open Geospatial Consortium.

Hetherington, R., B. Farrimond, and P. Clynch (2007): Interactive Web Visualisation of Proposals for Site
Developments. Proceedings 11th International Conference Information Visualization. 613-622.

Hildebrandt, D. (2008): Towards the Automatic Generation of Effective, Map-Like Visual
Representations from Heterogeneous Geodata in a Service-Oriented Infrastructure. In: C.
Meinel, H. Plattner, J. Döllner, M. Weske, A. Polze, R. Hirschfeld, F. Naumann and H. Giese (Ed.)

48 Service-driven 3D Atlas Cartography

Proceedings of the 3rd Ph.D. Retreat of the HPI Research School on Service-oriented Systems
Engineering. Universitätsverlag Potsdam. 15.11-15.12.

Hildebrandt, D., and J. Döllner (2010): Service-oriented, standards-based 3D geovisualization: Potential
and challenges. Computers, Environment and Urban Systems, 34(6), 484-495.

Hildebrandt, D., B. Hagedorn, and J. Dollner (2011): Image-based strategies for interactive visualisation
of complex 3D geovirtual environments on lightweight devices. Journal Location Based
Service, 5(2), 100-120.

Hurni, L., R. Sieber, R. Eichenberg, L. Hollenstein, and B. Odden (2011): Atlas der Schweiz. Konzept
2012-2016 und 2017-2020. Institut für Kartografie und Geoinformation IKG, ETH Zürich.

Iosifescu-Enescu, I. (2011): Cartographic Web Services. Dissertation, ETH Zurich, Zurich, Switzerland.

Khronos WebGL Working Group (2012): OpenGL ES - The Standard for Embedded Accelerated 3D
Graphics. http://www.khronos.org/opengles/ (retrieved on 04.05. 2012).

Kraak, M.-J., F. Ormeling, W. Broeder, E. MacGillavry, and W. v. d. Goorberg (2007): The Dutch National
Atlas in a GII environment: the application of design templates. Proceedings 23rd International
Cartographic Conference of the Cartographic Association. Moscow (Russia).

Lyubka, S. (2012): mongoose. http://code.google.com/p/mongoose/ (retrieved on 25.05. 2012).

Meng, L. (2003): Missing Theories and Methods in Digital Cartography. Proceedings 21st International
Cartographic Conference. ICA. Durban.

Neumann, A., and A. M. Winter (2011): Carto:net – SVG, scalable vector graphics: tutorials, examples,
widgets and librairies. http://www.carto.net/ (retrieved on 01.06. 2012).

Open Geospatial Consortium (2006): OpenGIS® Web Map Service, Implementation Specification.
Version 1.3.0. http://www.opengeospatial.org/standards/wms (retrieved on 15.04. 2012).

Open Geospatial Consortium (2012): OGC KML. http://www.opengeospatial.org/standards/kml
(retrieved on 20.03. 2012).

Ormeling, F. (1997): Functionality of Electronic School Atlases. Proceedings Seminar on Electronic
Atlases II. ICA Commission on National and Regional Atlases. Prage and The Hague. 33-41.

Ortner, F. (2011): Dienstbasierte Kartengenerierung für Web-Atlanten unter Anwendungen erweiterter
OGC-StandardsUniversität Zürich, Universität Zürich.

OSG Community (2007): OpenSceneGraph - Introduction. http://www.openscenegraph.org/projects/
osg/wiki/About/Introduction (retrieved on 15.04. 2012).

Pelican Ventures, I. (2012): osgEarth – Terrain On Demand. http://osgearth.org/ (retrieved on 19.03.
2012).

Persson, D., G. Gartner, and M. Buchroithner (2006): Towards a Typology of Interactivity Functions for
Visual Map Exploration. In: E. Stefanakis, M. P. Peterson, C. Armenakis and V. Delis (Ed.)
Geographic Hypermedia – Concepts and Systems. Heidelberg. Springer Verlag. 275-292.

Bibliographic References 49

Nadia Panchaud

Pulli, K. (2006): New APIs for Mobile Graphics. Proceedings SPIE Electronic Imaging: Multimedia on
Mobile Devices II. 1-13.

Quantum GIS (2012): QGIS Features. http://www.qgis.org/en/about-qgis/features.html (retrieved on
16.04. 2012).

Ramos, C. d. S., and W. Cartwright (2006): Atlases from Paper to Digital Medium. In: E. Stefanakis, M. P.
Peterson, C. Armenakis and V. Delis (Ed.) Geographic Hypermedia – Concepts and Systems.
Heidelberg. Springer. 97-119.

Rase, W.-D. (2003): Von 2D nach 3D – perspektivische Zeichnungen, Stereogramme, reale Modelle.
Kartographische Schriften, Band 7: Visualisierung und Erschliessung von Geodaten, 13-24.

Schilling, A., and T. H. Kolbe (2010): Draft for Candidate OpenGIS Web 3D Interface Standard. OpenGIS
Discussion Paper, Open Geospatial Consortium. http://portal.opengeospatial.org/files/?
artifact_id=36390.

Schnabel, O. (2002): Conception for an online-National Atlas of Germany. Diploma Work, Dresden
University of Technology.

Sieber, R., L. Hollenstein, B. Odden, and L. Hurni (2011): From Classic Atlas Design to Collaborative
Platforms – The SwissAtlasPlatform Project. Proceedings Proceedings of the 25th International
Cartographic Conference.

Singh, R. R. (2001): OGC Web Terrain Server (WTS). OpenGIS OGC Interoperability Program Report, Open
GIS Consortium. http://portal.opengeospatial.org/files/?artifact_id=1072.

St. John, M., M. B. Cowen, S. H. S., and O. H. M. (2001): The Use of 2D and 3D Displays for Shape-
Understanding versus Relative-Position Tasks. Human Factors, 43(1), 79-98.

Thomas, G. (2012): Learning WebGL. http://learningwebgl.com/blog/?p=134 (retrieved on 23.05. 2012).

Tory, M., A. E. Kirkpatrick, M. S. Atkins, and T. Moller (2006): Visualization Task Performance with 2D, 3D,
and Combination Displays. Visualization and Computer Graphics, IEEE Transactions, 12(1), 2-13.

Visual Size (2011): 3D Models Using Multiple Photos - Interactive Demos. http://www.visualsize.com/
3ddemo/index.idemo.php (retrieved on 26.04. 2012).

Walker, M., and P. Kalberer (2010): Comparison of Open Source Virtual Globe. Proceedings FOSS4G.
Barcelona (Spain).

Web 3D Consortium (2011): Web3D Product listing details. http://www.web3d.org/products/detail/
bs-contact-geo1/ (retrieved on 20.03. 2012).

x3dom (2012): x3dom Instant 3D the HTML way! http://www.x3dom.org/?page_id=2 (retrieved on
20.03. 2012).

50 Service-driven 3D Atlas Cartography

Appendices

I. Illustrations of the Prototype
a. 2D Maps Interface

b. Panorama View: General Map

Appendices 51

Nadia Panchaud

c. Panorama View: Geology

d. Panorama View: Geology, by night

52 Service-driven 3D Atlas Cartography

e. Panorama View: Population Density and Inhabitants

f. Panorama View: Boat Ownership Density and Types of Boats

Appendices 53

Nadia Panchaud

g. Block Diagram: General Map, Valais

h. Block Diagram: Geology, Valais

54 Service-driven 3D Atlas Cartography

i. Block Diagram: Geology, zoomed in, Valais

j. Block Diagram: Population Density and Inhabitants, Valais

Appendices 55

Nadia Panchaud

k. Block Diagram: General Map, Ticino

l. Block Diagram: Geology, Ticino

56 Service-driven 3D Atlas Cartography

m. Block Diagram: Population Density and Inhabitants, Ticino

Appendices 57

Nadia Panchaud

II. Panorama View Integration (getGlobeCapture.js)
 //Default parameters for the request
var sl_distance = 30000;
var yaw = 0;
var pitch = 30;
var roll = 0;
var poiX = 680000;
var poiY = 200000;
var slider_distance;
var slider_pitch;
var daytime = "\"12:00\"";
var port = 8082;
var poiX_text = "680'000";
var poiY_text = "200'000";

// Function called from the GUI through the tab
function getGlobeCapture (){
 //Remove other views and other useless things
 document.getElementById("map0").setAttributeNS(null,"display","none");
 document.getElementById("map1").setAttributeNS(null,"display","none");
 document.getElementById("position").setAttributeNS(null,"display","none");
 document.getElementById("attributeDisplay").setAttributeNS(null,"display","none");
 document.getElementById("kartentitel").setAttributeNS(null,"display","none");
 document.getElementById("tabgroupThema").setAttributeNS(null,"display","none");
 document.getElementById("mapZoomSlider").setAttributeNS(null,"display","none");
 document.getElementById("zoomIn").setAttributeNS(null,"display","none");
 document.getElementById("zoomOut").setAttributeNS(null,"display","none");
 document.getElementById("buttonpin").setAttributeNS(null,"display","none");
 document.getElementById("position3").setAttributeNS(null,"display","none");
 document.getElementById("kartentitel3").setAttributeNS(null,"display","none");
 myMapApp.tabgroups["navigation"].disableSingleTab(1);
 myMapApp.buttons["zoomManual"].deactivate();
 myMapApp.buttons["panManual"].deactivate();
 myMapApp.buttons["recenterMap"].deactivate();
 myMapApp.buttons["zoomFull"].deactivate();
 document.getElementById("frameGL").setAttributeNS(null,"display","none");
 document.getElementById("locFrame").setAttributeNS(null,"display","none");
 document.getElementById("checkBoxes").setAttributeNS(null,"display","none");
 document.getElementById("textMap2D").setAttributeNS(null,"display","none");
 document.getElementById("WEE_Map2D").setAttributeNS(null,"display","none");
 document.getElementById("WEE_BlockDiagram").setAttributeNS(null,"display","none");
 document.getElementById("WEL_BlockDiagram").setAttributeNS(null,"display","none");
 myMapApp.Windows["Ebenen"].close(false);
 myMapApp.Windows["Legende"].close(false);
 deleteTheme();

 // Set the panorama view and others to visible
 document.getElementById("position2").setAttributeNS(null,"display","inherit");
 document.getElementById("kartentitel2").setAttributeNS(null,"display","inherit");
 document.getElementById("slider_distance").setAttributeNS(null,"display","inherit");
 document.getElementById("buttons_yaw").setAttributeNS(null,"display","inherit");
 document.getElementById("slider_pitch").setAttributeNS(null,"display","inherit");
 document.getElementById("frame3D").setAttributeNS(null,"display","inherit");
 document.getElementById("loc_PoI").setAttributeNS(null,"display","inherit");
 document.getElementById("WEE_Panorama").setAttributeNS(null,"display","inherit");
 document.getElementById("textPanorama").setAttributeNS(null,"display","inherit");
 document.getElementById("checkBoxesPanorama").setAttributeNS(null,"display","inherit");
 myMapApp.Windows["Ebenen"].appendContent("WEE_Panorama",true);
 myMapApp.Windows["Legende"].appendContent("WEL_Panorama",true);

 // Get the default image
 getImageGC();
}

58 Service-driven 3D Atlas Cartography

// Set the distance value
function setDistanceTo(changetype,id,value){
 if(id == "slider_distance"){
 sl_distance = value.toFixed(0);
 getImageGC();
 }
}

// Set the pitch value
function setPitchTo(changetype,id,value){
 if (id == "slider_pitch"){
 pitch = value.toFixed(0);
 getImageGC();
 }
}

// Set the max and min distance/pitch to the point of interest
function setMaxMin (id){
 if (id == "distanceMax"){
 slider_distance.setValue(200000,true);
 }
 else if (id == "distanceMin"){
 slider_distance.setValue(5000,true);
 }
 else if (id == "pitchMax"){
 slider_pitch.setValue(90,true);
 }
 else if (id == "pitchMin"){
 slider_pitch.setValue(0,true);
 }
}

// Set the yaw
function setYawTo (groupId,evt,buttonState,buttonText){
 if (groupId == "N" & buttonState == true){
 yaw = 0;
 myMapApp.buttons["S"].setSwitchValue(false,false);
 myMapApp.buttons["E"].setSwitchValue(false,false);
 myMapApp.buttons["W"].setSwitchValue(false,false);
 myMapApp.buttons["NE"].setSwitchValue(false,false);
 myMapApp.buttons["NW"].setSwitchValue(false,false);
 myMapApp.buttons["SE"].setSwitchValue(false,false);
 myMapApp.buttons["SW"].setSwitchValue(false,false);
 }
 else if (groupId == "S" & buttonState == true){
 yaw = 180;
 myMapApp.buttons["N"].setSwitchValue(false,false);
 myMapApp.buttons["E"].setSwitchValue(false,false);
 myMapApp.buttons["W"].setSwitchValue(false,false);
 myMapApp.buttons["NE"].setSwitchValue(false,false);
 myMapApp.buttons["NW"].setSwitchValue(false,false);
 myMapApp.buttons["SE"].setSwitchValue(false,false);
 myMapApp.buttons["SW"].setSwitchValue(false,false);
 }
 else if (groupId == "E" & buttonState == true){
 yaw = 270;
 myMapApp.buttons["N"].setSwitchValue(false,false);
 myMapApp.buttons["S"].setSwitchValue(false,false);
 myMapApp.buttons["W"].setSwitchValue(false,false);
 myMapApp.buttons["NE"].setSwitchValue(false,false);
 myMapApp.buttons["NW"].setSwitchValue(false,false);
 myMapApp.buttons["SE"].setSwitchValue(false,false);
 myMapApp.buttons["SW"].setSwitchValue(false,false);
 }
 else if (groupId == "W" & buttonState == true){

Appendices 59

Nadia Panchaud

 yaw = 90;
 myMapApp.buttons["N"].setSwitchValue(false,false);
 myMapApp.buttons["S"].setSwitchValue(false,false);
 myMapApp.buttons["E"].setSwitchValue(false,false);
 myMapApp.buttons["NE"].setSwitchValue(false,false);
 myMapApp.buttons["NW"].setSwitchValue(false,false);
 myMapApp.buttons["SE"].setSwitchValue(false,false);
 myMapApp.buttons["SW"].setSwitchValue(false,false);
 }
 else if (groupId == "NE" & buttonState == true){
 yaw = 315;
 myMapApp.buttons["N"].setSwitchValue(false,false);
 myMapApp.buttons["S"].setSwitchValue(false,false);
 myMapApp.buttons["E"].setSwitchValue(false,false);
 myMapApp.buttons["W"].setSwitchValue(false,false);
 myMapApp.buttons["NW"].setSwitchValue(false,false);
 myMapApp.buttons["SE"].setSwitchValue(false,false);
 myMapApp.buttons["SW"].setSwitchValue(false,false);
 }
 else if (groupId == "NW" & buttonState == true){
 yaw = 45;
 myMapApp.buttons["N"].setSwitchValue(false,false);
 myMapApp.buttons["S"].setSwitchValue(false,false);
 myMapApp.buttons["E"].setSwitchValue(false,false);
 myMapApp.buttons["W"].setSwitchValue(false,false);
 myMapApp.buttons["NE"].setSwitchValue(false,false);
 myMapApp.buttons["SE"].setSwitchValue(false,false);
 myMapApp.buttons["SW"].setSwitchValue(false,false);
 }
 else if (groupId == "SE" & buttonState == true){
 yaw = 225;
 myMapApp.buttons["N"].setSwitchValue(false,false);
 myMapApp.buttons["S"].setSwitchValue(false,false);
 myMapApp.buttons["E"].setSwitchValue(false,false);
 myMapApp.buttons["W"].setSwitchValue(false,false);
 myMapApp.buttons["NW"].setSwitchValue(false,false);
 myMapApp.buttons["NE"].setSwitchValue(false,false);
 myMapApp.buttons["SW"].setSwitchValue(false,false);
 }
 else if (groupId == "SW" & buttonState == true){
 yaw = 135;
 myMapApp.buttons["N"].setSwitchValue(false,false);
 myMapApp.buttons["S"].setSwitchValue(false,false);
 myMapApp.buttons["E"].setSwitchValue(false,false);
 myMapApp.buttons["W"].setSwitchValue(false,false);
 myMapApp.buttons["NW"].setSwitchValue(false,false);
 myMapApp.buttons["NE"].setSwitchValue(false,false);
 myMapApp.buttons["SE"].setSwitchValue(false,false);
 }
 getImageGC();
}

// Set the day time
function setDaytime(id,selectedId,labelText){
 if (selectedId == "day"){
 daytime = "\"12:00\"";
 }
 if (selectedId == "night"){
 daytime = "\"24:00\"";
 }
 getImageGC();
}

// Get the coordinates of the Point of Interest
function setPointOfInterest(evt){

60 Service-driven 3D Atlas Cartography

 var Index = myMapApp.tabgroups["view"].activeTabindex;
 if (Index == 1 || Index == 2){
 myMapApp.buttons["zoomManual"].deactivate();
 }
 if(evt.type == "click" && Index == 1){
 poiX_text = document.getElementById("coordX").firstChild.nodeValue;
 poiY_text = document.getElementById("coordY").firstChild.nodeValue;
 var x_array = poiX_text.split("'");
 var y_array = poiY_text.split("'");
 poiX = parseFloat(x_array[0] + x_array[1]) ;
 poiY = parseFloat(y_array[0] + y_array[1]) ;
 document.getElementById("circlePoI").setAttributeNS(null,"cx",poiX);
 document.getElementById("circlePoI").setAttributeNS(null,"cy",-poiY);
 getImageGC();
 }
}

// Set the theme of the texture
function setTheme(id,selectedId,labelText){
 if(selectedId == "base"){
 port = 8082;
 document.getElementById("pan_legend_base").setAttributeNS(null,"display","inherit");
 document.getElementById("pan_legend_geology").setAttributeNS(null,"display","none");
 document.getElementById("pan_legend_pop_density").setAttributeNS(null,"display","none");
 document.getElementById("pan_legend_boat").setAttributeNS(null,"display","none");
 }
 else if(selectedId == "geology"){
 port = 8083;
 document.getElementById("pan_legend_geology").setAttributeNS(null,"display","inherit");
 document.getElementById("pan_legend_base").setAttributeNS(null,"display","none");
 document.getElementById("pan_legend_pop_density").setAttributeNS(null,"display","none");
 document.getElementById("pan_legend_boat").setAttributeNS(null,"display","none");
 }
 else if(selectedId == "pop_density"){
 port = 8084;
 document.getElementById("pan_legend_pop_density").setAttributeNS(null,"display","inherit");
 document.getElementById("pan_legend_base").setAttributeNS(null,"display","none");
 document.getElementById("pan_legend_geology").setAttributeNS(null,"display","none");
 document.getElementById("pan_legend_boat").setAttributeNS(null,"display","none");
 }
 else if(selectedId == "boat"){
 port = 8086;
 document.getElementById("pan_legend_boat").setAttributeNS(null,"display","inherit");
 document.getElementById("pan_legend_base").setAttributeNS(null,"display","none");
 document.getElementById("pan_legend_pop_density").setAttributeNS(null,"display","none");
 document.getElementById("pan_legend_geology").setAttributeNS(null,"display","none");
 }
 getImageGC();
}

// Send the request to the Globe Capture server
function getImageGC(){

 //Set the display values
 document.getElementById("value_distance").firstChild.nodeValue = sl_distance +" [m]";
 document.getElementById("value_pitch").firstChild.nodeValue = pitch +" [°]";
 document.getElementById("PoIX").firstChild.nodeValue = "X: " + poiX_text;
 document.getElementById("PoIY").firstChild.nodeValue = "Y: " + poiY_text;

 // Remove Previous GlobeCapture Image
 var myRasterLayer = document.getElementById("frame3DGroup");
 if (myRasterLayer.childNodes.length > 0) {
 var oldImage = document.getElementById("frame3DGroupImage");
 myRasterLayer.removeChild(oldImage);
 }

Appendices 61

Nadia Panchaud

 // Create Element to Hold the Image and set Attributes
 var myRasterImage = document.createElementNS(svgNS,"image");
 myRasterImage.setAttributeNS(null,"x",0) ;
 myRasterImage.setAttributeNS(null,"y",0);
 myRasterImage.setAttributeNS(null,"width",1024);
 myRasterImage.setAttributeNS(null,"height",728);
 myRasterImage.setAttributeNS(null,"id","frame3DGroupImage");
 var x = myRasterImage.getAttributeNS(null,"x");
 var y = myRasterImage.getAttributeNS(null,"y");
 var width = myRasterImage.getAttributeNS(null,"width");
 var height = myRasterImage.getAttributeNS(null,"height");

 // Create the URL of the ClobeCapture Image
 var myImageUrl = "http://129.132.127.194:" + port +"/generate_image?json='[{\"cmd\":\"set_image_spec\",\"image\":
{\"width\":";
 myImageUrl += width + ",\"height\":" + height +",\"type\":\"png\"}},"
 myImageUrl += "{\"cmd\":\"set_camera\",\"camera\":{\"lookat\":[" + poiX + "," + poiY + "],\"ypr\":["+ yaw +","+ pitch +","+
roll +"],\"distance\":" + sl_distance + ",\"max_time_to_wait_in_s\":1},\"date_time\":" +daytime +"}]'";
 myImageUrl += "&format=\"png\"";

 // Append the Image
 myRasterImage.setAttributeNS(xlinkNS,"xlink:href",myImageUrl);
 myRasterLayer.appendChild(myRasterImage);
}

62 Service-driven 3D Atlas Cartography

III. Block Diagram Integration (getBlockDiagram.js)
//Function called from the GUI through the tab
function getBlockDiagram () {

 // Remove other views and other useless things
 document.getElementById("map0").setAttributeNS(null,"display","none");
 document.getElementById("map1").setAttributeNS(null,"display","none");
 document.getElementById("frame3D").setAttributeNS(null,"display","none");
 document.getElementById("position2").setAttributeNS(null,"display","none");
 document.getElementById("kartentitel2").setAttributeNS(null,"display","none");
 document.getElementById("slider_distance").setAttributeNS(null,"display","none");
 document.getElementById("buttons_yaw").setAttributeNS(null,"display","none");
 document.getElementById("slider_pitch").setAttributeNS(null,"display","none");
 document.getElementById("position").setAttributeNS(null,"display","none");
 document.getElementById("attributeDisplay").setAttributeNS(null,"display","none");
 document.getElementById("kartentitel").setAttributeNS(null,"display","none");
 document.getElementById("tabgroupThema").setAttributeNS(null,"display","none");
 document.getElementById("mapZoomSlider").setAttributeNS(null,"display","none");
 document.getElementById("zoomIn").setAttributeNS(null,"display","none");
 document.getElementById("zoomOut").setAttributeNS(null,"display","none");
 document.getElementById("buttonpin").setAttributeNS(null,"display","none");
 document.getElementById("loc_PoI").setAttributeNS(null,"display","none");
 document.getElementById("WEE_Panorama").setAttributeNS(null,"display","none");
 myMapApp.tabgroups["navigation"].disableSingleTab(1);
 myMapApp.buttons["zoomManual"].deactivate();
 myMapApp.buttons["panManual"].deactivate();
 myMapApp.buttons["recenterMap"].deactivate();
 myMapApp.buttons["zoomFull"].deactivate();
 document.getElementById("checkBoxes").setAttributeNS(null,"display","none");
 document.getElementById("textMap2D").setAttributeNS(null,"display","none");
 document.getElementById("WEE_Map2D").setAttributeNS(null,"display","none");
 document.getElementById("WEE_Panorama").setAttributeNS(null,"display","none");
 document.getElementById("WEL_Panorama").setAttributeNS(null,"display","none");
 myMapApp.Windows["Ebenen"].close(false);
 myMapApp.Windows["Legende"].close(false);
 deleteTheme();

 // Set the map and others to visible
 document.getElementById("position3").setAttributeNS(null,"display","inherit");
 document.getElementById("kartentitel3").setAttributeNS(null,"display","inherit");
 document.getElementById("frameGL").setAttributeNS(null,"display","inherit");
 document.getElementById("locFrame").setAttributeNS(null,"display","inherit");
 myMapApp.Windows["Ebenen"].appendContent("WEE_BlockDiagram",true);
 myMapApp.Windows["Legende"].appendContent("WEL_BlockDiagram",true);
 document.getElementById("WEE_BlockDiagram").setAttributeNS(null,"display","inherit");
 document.getElementById("WEL_BlockDiagram").setAttributeNS(null,"display","inherit");

 // Windows to keep the Block Diagram in the middle **** Does not work!*******
 var placeholdersStylesWF = {"fill":"none","stroke":"none"};
 var windowStylesWF = {"fill":"none","stroke":"red"};
 var titlebarStylesWF = {"fill":"none","stroke":"none"};
 var statusbarStylesWF = {"fill":"none"};
 var titletextStylesWF = {"font-family":"Frutiger LT","font-size":12,"fill":"#1D5A69"};
 var statustextStylesWF = {"font-family":"Frutiger LT","font-size":9,"fill":"#1D5A69"};
 var buttonStylesWF = {"fill":"none","stroke":"none"};
 var titlebarHeightWF = 0;
 var statusbarHeightWF = 0;

 // Get the diagram in file webGL.js
 getDiagram();
}

// Set the theme of the block diagram
function setThemeBD(id,selectedId,labelText){

Appendices 63

Nadia Panchaud

 if(selectedId == "base"){
 texture = "basemap.php";
 document.getElementById("bd_legend_base").setAttributeNS(null,"display","inherit");
 document.getElementById("bd_legend_geology").setAttributeNS(null,"display","none");
 document.getElementById("bd_legend_pop_density").setAttributeNS(null,"display","none");
 }
 if(selectedId == "geology"){
 texture = "geology.php";
 document.getElementById("bd_legend_geology").setAttributeNS(null,"display","inherit");
 document.getElementById("bd_legend_base").setAttributeNS(null,"display","none");
 document.getElementById("bd_legend_pop_density").setAttributeNS(null,"display","none");
 }
 if(selectedId == "pop_density"){
 texture = "pop_density.php";
 document.getElementById("bd_legend_pop_density").setAttributeNS(null,"display","inherit");
 document.getElementById("bd_legend_geology").setAttributeNS(null,"display","none");
 document.getElementById("bd_legend_base").setAttributeNS(null,"display","none");
 }
 getDiagram();
}

// Set the right DEM for the block diagram
function getDHM(groupId,indexNr,value){
 if (value == "Matterhorn"){
 loc = "matt_";
 dhm = "matt_dhm.txt";
 document.getElementById("loc_matt").setAttributeNS(null,"display","inherit");
 document.getElementById("loc_lav").setAttributeNS(null,"display","none");
 document.getElementById("loc_val").setAttributeNS(null,"display","none");
 document.getElementById("loc_tic").setAttributeNS(null,"display","none");
 document.getElementById("loc_stg").setAttributeNS(null,"display","none");
 }
 else if (value == "En Lavaux"){
 loc = "lav_";
 dhm = "lav_dhm.txt";
 document.getElementById("loc_lav").setAttributeNS(null,"display","inherit");
 document.getElementById("loc_matt").setAttributeNS(null,"display","none");
 document.getElementById("loc_val").setAttributeNS(null,"display","none");
 document.getElementById("loc_tic").setAttributeNS(null,"display","none");
 document.getElementById("loc_stg").setAttributeNS(null,"display","none");
 }
 else if (value == "Sud du Valais"){
 loc = "val_";
 dhm = "val_dhm.txt";
 document.getElementById("loc_val").setAttributeNS(null,"display","inherit");
 document.getElementById("loc_matt").setAttributeNS(null,"display","none");
 document.getElementById("loc_lav").setAttributeNS(null,"display","none");
 document.getElementById("loc_tic").setAttributeNS(null,"display","none");
 document.getElementById("loc_stg").setAttributeNS(null,"display","none");
 }
 else if (value == "Ticino"){
 loc = "tic_";
 dhm = "tic_dhm.txt";
 document.getElementById("loc_tic").setAttributeNS(null,"display","inherit");
 document.getElementById("loc_matt").setAttributeNS(null,"display","none");
 document.getElementById("loc_val").setAttributeNS(null,"display","none");
 document.getElementById("loc_lav").setAttributeNS(null,"display","none");
 document.getElementById("loc_stg").setAttributeNS(null,"display","none");
 }
 else if (value == "St Gallen"){
 loc = "stg_";
 dhm = "stg_dhm.txt";
 document.getElementById("loc_stg").setAttributeNS(null,"display","inherit");
 document.getElementById("loc_matt").setAttributeNS(null,"display","none");

64 Service-driven 3D Atlas Cartography

 document.getElementById("loc_val").setAttributeNS(null,"display","none");
 document.getElementById("loc_tic").setAttributeNS(null,"display","none");
 document.getElementById("loc_lav").setAttributeNS(null,"display","none");
 }
 getDiagram();
 }

Appendices 65

Nadia Panchaud

IV. Extract of the WebGL Integration (webGL.js)
The following functions are the main functions for the block diagram generation.

setUpCanvas() generate a basic canvas to draw the block diagram in later:
function setUpCanvas(){
! ! gl.clearColor(1.0, 1.0, 1.0, 1.0);
! ! gl.clear(gl.COLOR_BUFFER_BIT);
! ! gl.enable(gl.CULL_FACE);
! ! gl.cullFace(gl.BACK);
! }

addShader(id) allows to compile and attach the shaders, both for vertices and fragments, to the block
diagram:
function addShader(id){
! ! var shaderScript = document.getElementById(id);
! ! var shaderType = getShaderType(shaderScript);
! ! var source = getShaderSource(shaderScript);
! ! var shader = gl.createShader(shaderType);
! ! gl.shaderSource(shader, source);
! ! gl.compileShader(shader);
! ! if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)){
! ! ! throw "Could not compile shader '" + id + "':\n" + gl.getShaderInfoLog(shader);
! ! }
! ! gl.attachShader(prog, shader);
! }

loadData() assigns the texture from the WMS, the DEM and the texture for the sides of the block
diagram into variables used to draw the scene, and calls the loadTexture(srs) function:
function loadData(){
! ! mapTexture = loadTexture("php/"+ loc + texture);
! ! baseTexture = loadTexture("data/sockel.png");
! ! grid = new Grid();
! ! grid.runWhenLoaded(start);
! ! grid.loadData("data/" + dhm);
! }

loadTexture(src) creates the texture from the WMS, the DEM and the texture for the sides of the block
diagram from the data repository and then calls the drawScene() function:
! function loadTexture(src){
! ! var texture = gl.createTexture();
! ! var image = new Image();
! ! image.onload = function(){
! ! ! gl.bindTexture(gl.TEXTURE_2D, texture);
! ! ! gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
! ! ! gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);
! ! ! gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
! ! ! gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
! ! ! gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);
! ! ! WebGLTexture.prototype.loaded = true;
! ! ! drawScene();
! ! };
! ! image.onerror = function(){
! ! ! alert("Error while loading image '" + src + "'.");
! ! }
! ! image.src = src;
! ! return texture;
! }
drawScene() actually draws the block diagram within the canvas:

66 Service-driven 3D Atlas Cartography

! function drawScene(){
! ! gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
! ! gl.uniform4f(gl.getUniformLocation(prog, "color"), 0.5, 0.5, 0.5, 1.0);
! ! gl.enable(gl.TEXTURE_2D);
! ! var modelMatrix = mat4.lookAt([0,0,2.4], [0,0,0], [0,1,0]);
! ! var ratio = canvas.height / canvas.width;
! ! mat4.scale(modelMatrix, [objectScale * Math.max(ratio, 1.0), objectScale * Math.max(1.0 / ratio, 1.0),
1.0]);
! ! mat4.rotate(modelMatrix, deg2Rad(xRot), [1, 0, 0]);
! ! mat4.rotate(modelMatrix, deg2Rad(zRot), [0, 0, 1]);
! ! mat4.translate(modelMatrix, [-0.5, -0.5, -zOffset]);
! ! var mMatLoc = gl.getUniformLocation(prog, "modelMatrix");
! ! gl.uniformMatrix4fv(mMatLoc, false, modelMatrix);
! ! var nr = grid.getNumRows();
! ! var nc = grid.getNumCols();
! ! var tul = gl.getUniformLocation(prog, "textureSampler");

! ! if (mapTexture.loaded){
! ! ! gl.uniform1i(tul, 0);
! ! ! gl.activeTexture(gl.TEXTURE0);
! ! ! gl.bindTexture(gl.TEXTURE_2D, mapTexture);
! ! ! for (var i = 0; i < nr - 1; ++i){
! ! ! ! gl.drawElements(gl.TRIANGLE_STRIP, 2 * nc, gl.UNSIGNED_SHORT, 4 * nc * i);
! ! ! }
! ! }
!
! ! if (baseTexture.loaded){
! ! ! gl.uniform1i(tul, 1);
! ! ! gl.activeTexture(gl.TEXTURE1);
! ! ! gl.bindTexture(gl.TEXTURE_2D, baseTexture);
! ! ! var offset = 4 * nc * (nr - 1);
! ! ! gl.drawElements(gl.TRIANGLE_STRIP, nc * 2, gl.UNSIGNED_SHORT, offset);
! ! ! gl.drawElements(gl.TRIANGLE_STRIP, nr * 2, gl.UNSIGNED_SHORT, offset += 4 * nc);
! ! ! gl.drawElements(gl.TRIANGLE_STRIP, nc * 2, gl.UNSIGNED_SHORT, offset += 4 * nr);
! ! ! gl.drawElements(gl.TRIANGLE_STRIP, nr * 2, gl.UNSIGNED_SHORT, offset += 4 * nc);
! ! }
!
! ! gl.flush();
! }

Appendices 67

Nadia Panchaud

V. Integration of WMS in the Globe Capture Request
function get_default_cmd(cmd){
! switch(cmd) {
! ! case "load_map":
! ! ! return {
! ! ! ! "cmd": 'load_map',
! ! ! ! "options": {
! ! ! ! ! "lighting": "enabled"
! ! ! ! },
! ! ! ! "layers": [! {
! ! ! ! ! "type": "image",
! ! ! ! ! "name": "relief",
! ! ! ! ! "profile": {
! ! ! ! ! ! "srs": "EPSG:4326",
! ! ! ! ! ! "extents": []
! ! ! ! ! ! },
! ! ! ! ! "url": "q:/relief_500_raster/tms.xml",
! ! ! ! ! "format": "tms"
! ! ! ! ! },
! ! ! ! ! {
! ! ! ! ! "type": "elevation",
! ! ! ! ! "name": "DHM Ferranti",
! ! ! ! ! "profile": {
! ! ! ! ! ! "srs": "EPSG:4326",
! ! ! ! ! ! "extents": []
! ! ! ! ! ! },
! ! ! ! ! "url": "q:/dhm_ferranti_wgs84/tms.xml",
! ! ! ! ! "format": "tms"
! ! ! ! ! },
! ! ! ! ! {
! ! ! ! ! "type": "image",
! ! ! ! ! "name": "wms1",
! ! ! ! ! "profile": {
! ! ! ! ! ! "srs": "EPSG:4326",
! ! ! ! ! ! "extents": []
! ! ! ! ! ! },
! ! ! ! ! "url": "http://karlinapp.ethz.ch/cgi-bin/qgis_map_server/adsweb2/
qgis_mapserv.fcgi",
! ! ! ! ! "layer": "Geology,Border_band,Border_line",
! ! ! ! ! "image_format": "png",
! ! ! ! ! "style": "Geology,Border_band,Border_line",
! ! ! ! ! "srs": "EPSG:4326",
! ! ! ! ! "transparent": "true",
! ! ! ! ! "format": "wms",
! ! ! ! ! "opacity": "0.5"
! ! ! ! ! }
! ! ! ! !]
! ! ! };
! ! ! break;
! ! case "set_camera":
! ! ! return {
! ! ! ! "cmd": 'set_camera',
! ! ! ! "camera": {
! ! ! ! ! "lookat": [667970.37,203403.09,0],
! ! ! ! ! "ypr": [0,30,0],
! ! ! ! ! "distance": 50000,
! ! ! ! ! "max_time_to_wait_in_s": 3
! ! ! ! ! }! ! ! !
! ! ! };
! ! ! break;
! ! case "set_image_spec":
! ! ! return {
! ! ! ! "cmd": "set_image_spec",
! ! ! ! "image": {

68 Service-driven 3D Atlas Cartography

! ! ! ! ! "width": 640,
! ! ! ! ! "height": 480,
! ! ! ! ! "type": "png"
! ! ! ! ! }
! ! ! };
! ! ! break;
! };!
}

Appendices 69

Nadia Panchaud

VI. Examples of WMS Request for the Block Diagram
This example is the request for the block diagram of Ticino with the general map.
<?php
header('Content-Type: image/png');
readfile('http://karlinapp.ethz.ch/cgi-bin/qgis_map_server/adsweb/qgis_mapserv.fcgi?
SERVICE=WMS&version=1.3.0&REQUEST=GetMap&LAYERS=Background,Forest,Agglomeration,LakesBD,RiversBD,
Border_band,Border_line,RoadsBD,RoadsBD,Airports,Airports_labels&STYLES=Background,Forest,Agglomeration,Lak
esBD,RiversBD,Border_band,Border_line,RoadsBD_stroke,RoadsBD_fill,Airports,Airports_labels&FORMAT=image/
png&CRS=EPSG:
21781&WIDTH=1200&HEIGHT=1200&BBOX=693400,87650,743400,137650&TRANSPARENT=true');
?>

This example is the request for the block diagram of Valais with the geology map.
<?php
header('Content-Type: image/png');
readfile('http://karlinapp.ethz.ch/cgi-bin/qgis_map_server/adsweb/qgis_mapserv.fcgi?
SERVICE=WMS&version=1.3.0&REQUEST=GetMap&LAYERS=Geology,Border_band,Border_line&STYLES=Geology,
Border_band,Border_line&FORMAT=image/png&CRS=EPSG:
21781&WIDTH=1200&HEIGHT=1200&BBOX=572100,83200,622100,133200&TRANSPARENT=true');
?>

70 Service-driven 3D Atlas Cartography

VII. Vertex and Fragment Shaders Integration
<script id="vertex" type="x-shader/x-vertex">
! ! uniform mat4 perspectiveMatrix;
! ! uniform mat4 modelMatrix;
! ! attribute vec3 pos;
! ! attribute vec3 norm;
! ! varying vec2 textureCoordinates;
! ! varying float intensity;
! ! const vec3 lightDirection = vec3(1.0, 1.0, -1.0);
! ! const float ambient = 0.3;
! ! const float diffuse = 0.5;
! ! const float specular = 0.2;
! ! const float roughness = 20.0;
!
! ! void main()
! ! {
! ! ! textureCoordinates = pos.xy;
! ! ! gl_Position = perspectiveMatrix * modelMatrix * vec4(pos, 1.0);
! ! ! vec3 normalVector = normalize(modelMatrix * vec4(norm, 0.0)).xyz;
! ! ! vec3 lightVector = normalize(lightDirection);
! ! ! vec3 specularVector = normalize(vec3(0.0, 0.0, -1.0) + lightVector);
! ! ! float diffuseIntensity = diffuse * max(0.0, dot(normalVector, lightVector));
! ! ! float specularIntensity = specular * pow(max(0.0, dot(normalVector, specularVector)),
roughness);
! ! ! intensity = ambient + diffuseIntensity + specularIntensity;
! ! }
! </script>
! <script id="fragment" type="x-shader/x-fragment">
! #ifdef GL_ES
! ! precision highp float;
! #endif
! ! uniform sampler2D textureSampler;
! ! varying vec2 textureCoordinates;
! ! uniform vec4 color;
! ! varying float intensity;
! ! const float gamma = 1.0;
!
! ! void main(void)
! ! {
! ! ! vec4 color = texture2D(textureSampler, textureCoordinates);

! ! ! // This command draws the map without the shadows
! ! ! // gl_FragColor = color;
! !
! ! ! // This command draws only the shadows
! ! ! // gl_FragColor = vec4(vec3(intensity), 1.0);
! !
! ! ! // This command draws the map with the shadows
! ! ! gl_FragColor = vec4(intensity * pow(color.rgb, vec3(gamma)), 1.0);
! ! }
! </script>

Appendices 71

Nadia Panchaud

VIII. Functions of Existing 3D Digital Atlases

AdS SWAi GPF 3D Viewer GPB 3D Viewer

General
Functions

Navigatio
n
Functions

SpatialNavigatio
n
Functions

Thematic

Navigatio
n
Functions

Time

Didactic
Functions

Explanati
on

Didactic
Functions

Self Check

Cartograp
hic and
Visualizati
on
Functions

Map
Manipu-
lation

Cartograp
hic and
Visualizati
on
Functions

Redlining

Cartograp
hic and
Visualizati
on
Functions

Explorati
ve Data
Analysis

GIS
Functions

Spatial
Query

GIS
Functions

Thematic
Query

GIS
Functions

Analysis

- language choice
-next/previous
- tooltipps
-help
-global options
- starting page
- save as image
-print maps
- load/save maps
-exit
- fullscreen view
-minimize/maximize

window

- language choice
-print
-preferences
- tooltips
-help
- impressum
- start page
-exit
- system information
- import/export/save

maps
-double windows
-next/previous
-maps history

-hotspots
-organization of layout
- tooltipps
-bookmarks
- sent to a friend
-help
- impressum
- full screen view
- save maps

n.a.

-zoom in/out
-pan
- reference map
- settings of location
-viewing direction
-aperture angle
-viewing distance
-

-zoom in/out
-pan
- regional organization
-orientation
-coordinates display
- search

-zoom in/out
-pan
-orientation
- relief view
- reference map
-altitude
- search location
- fly over
-navigation with the

mouse

-viewpoint
-distance
-pitch

- search
-choice of displayed

layers
-choice of theme

-choice of displayed
layers

-choice of displayed
layers
-organized within

themes

n.a.

-choice of period -year selection for some
maps

n.a. n.a.

- information
regarding thematic
data only for block
diagram in 3D

n.a. n.a
There is a web platform
specifically aimed at
schoolers and teachers:
Edugéo. It includes 2D
and 3D maps and works
as an exchange platform
for geographic teacher.
Access restricted.

n.a.

n.a. n.a.

n.a
There is a web platform
specifically aimed at
schoolers and teachers:
Edugéo. It includes 2D
and 3D maps and works
as an exchange platform
for geographic teacher.
Access restricted.

n.a.

- layers on/off
- legend on/off
- transparency
-modification of the

legend color
schemes
-changes of labels

settings

- layers on/off
- legend on/off

- transparency of layers
- layers on/off
- legend on/off

-exaggeration of the
relief

n.a. n.a. n.a. n.a.

-modification of
classes
- sky settings
-map comparison

-map comparison
(location
synchronization)

n.a. n.a.

-profile
-coordinates display
-

n.a. -altitude
-distance and surface

measurement

n.a.

-coordinates
-

n.a. n.a. n.a.

-aspect
- slope

n.a. n.a. n.a.

72 Service-driven 3D Atlas Cartography

IX. Requirements Overview

System requirements Keywords

Service-oriented
architecture

A service oriented system is required to allow thin-client
access to the visualization of massive geodata within the
atlas, no matter what are the processing softwares or
capacities of the client.

Service-driven
Thin client

No plugin needed The absence of plugin aims at simplifying the use of the
atlas and to avoid any compatibility issues between plugin
and browser or platform.

No plugin
Browser visualization
Ease of use

Cross-platform The system has to be able to works fully and independently
from the software and hardware platforms.

Scope of distribution
Platform independency

Interoperability and
integration

Integration and interoperability (increases the integration
of external data sources, especially through applying
standards) are required to connect computer systems
effectively and efficiently on different level of abstraction.

Interoperability
Use of standards
Integration

Non-functional features Support for easy updating, scaling up, extensibility, reuse,
and robustness for instance. It helps make the product
long-lasting and optimize its use and development.

Update & Extensibility
Reuse & Robustness

Open source It allows a direct access to the code and prevent any issue
with copyright, while providing the support of the
developers' community

Open source

Support for massive
amount of geodata and
dynamic data

To build a comprehensive atlas requires support for massive
amount of geodata, as well as dynamic geodata. Without
this availability and support, the usefulness of such atlas is
quite small.

Amount of geodata
Dynamic geodata

Visualization requirements Keywords

High level of abstraction Ability to build geovisualization system at an increasing
level of abstraction.

Abstraction

Effective, high quality
visual representations

The complexity of the system should not be at the expense
of the visualization quality and of its efficiency.

Visualization quality

Support for user styling This is highly relevant for web atlases because it allows the
users to manipulate not only the representation of the
landscape, but also of the representation of the thematic
data.

Color scheme settings
Atmosphere and
landscape settings

Multiple views Multiple and synchronized (or coordinated) views of map is
an important feature for simple exploratory visualization
because it allows to visually compare geodata.

Synchronized views
Collaborative views
Exploratory
visualization

Interaction requirements Keywords

High degree of interactivity Interaction and dynamic display have to be at earth of such
atlas conception in order to get the best out of the geodata
visualization. It allows the users to build their own
knowledge and representations from the geodata.

Interactivity

Intuitive navigation
(thematic and spatial)

3D geodata are more complex than 2D geodata and thus an
appropriate and intuitive navigation within the data is
indispensable.

Navigation
Handling of complexity

Query and processing Requirements for well-developed atlas, allows to get the
most out of the spatial data.

Query
Data processing

Appendices 73

Nadia Panchaud

Declaration of Originality

This sheet must be signed and enclosed with every piece of written work submitted at ETH.

I hereby declare that the written work I have submitted entitled
Service-driven 3D Atlas Cartography

is original work which I alone have authored and which is written in my own words.

Author
Last name First name
Panchaud Nadia

Supervisor
Last name First name
Dr. Prof. Hurni Lorenz

Supervising tutors
Last name First name
Dr. Iosifescu-Enescu Ionut
Dr. Sieber René

With this signature I declare that I have been informed regarding normal academic citation rules and
that I have read and understood the information on "Citation etiquette" (http://www.ethz.ch/
students/exams/plagiarism_s_en.pdf). The citation conventions usual to the discipline in question
have been respected.

The above written work may be tested electronically for plagiarism.

Place and date Signature

74 Service-driven 3D Atlas Cartography

	Acknowledgement
	Abstract
	Table of Content
	Registers
	Abbreviations
	1. Introduction
	1.1. Introduction and Problem Statement
	1.2. Motivation
	1.3. Goals
	1.4. Structure of the Report

	2. Methodolgy
	2.1. Method
	2.2. Data
	2.3. Infrastructure

	3. Literature Review
	3.1. Atlases and 3D Visualization
	3.2. Atlas Functions

	4. Technology Review
	4.1. Existing Online 3D Atlases and 3D Visualization Products
	4.2. 3D Technologies Review
	4.3 Web Services
	4.4 Architectures

	5. Requirements
	5.1. System Requirements
	5.2. Visualization Requirements
	5.3. Interactivity Requirements

	6. Implementation
	6.1. Architecture
	6.2. High-level Workflow
	6.3. Presentation of the Prototype

	7. Discussion of Results
	7.1. Overview
	7.2. Advantages and Weaknesses of the Used 3D Technologies
	7.3. Recommendations for the Architecture

	8. Conclusions and Outlook
	8.1. Conclusions
	8.2. Outlook

	Bibliographic References
	Appendices
	Declaration of Originality

