University of Ljubljana

Derivation of a Polynomial Equation for the Natural Earth Projection

Graduation Thesis by Bojan Šavrič
University of Ljubljana, Slovenia

The Natural Earth Projection

The Natural Earth projection was developed in Flex Projector by Tom Patterson (U.S. National Park Service). Using a graphical design approach, he defined the lengths and the vertical distribution of parallels for every five degrees of increasing latitude. In the Flex Projector implementation of the projection, cubic spline interpolation determines the position of intermediate points.

Natural Earth

Tissot's indicatrices

Goals and Methods

1. Analytical expression for projecting spherical φ / λ to Cartesian X / Y coordinates

A simple polynomial approximation was developed, which involved least square adjustments. Preserving the dimensions of the graticule required the addition of two constraints to these adjustments.

2. Smoothed corners at the end of the pole lines

Shortening the length of the pole lines and reducing the slope of the meridians improved the roundness of the corners.

This true pseudo-cylindrical projection has a distinguishing characteristic - rounded corners where border meridians meet the pole lines. The Natural Earth projection is neither conformal nor equal area, but has distortion characteristics comparable to other well-known projections.

Polynomial Equations

$\mathrm{X}=\mathrm{R} \cdot \lambda \cdot\left(\mathrm{A}_{1}+\mathrm{A}_{2} \varphi^{2}+\mathrm{A}_{3} \varphi^{4}+\mathrm{A}_{4} \varphi^{10}+\mathrm{A}_{5} \varphi^{12}\right)$
$\mathrm{Y}=\mathrm{R} \cdot\left(\mathrm{B}_{1} \varphi+\mathrm{B}_{2} \varphi^{3}+\mathrm{B}_{3} \varphi^{7}+\mathrm{B}_{4} \varphi^{9}+\mathrm{B}_{5} \varphi^{11}\right)$
where:
X and Y are the projected coordinates, φ and λ are the latitude and longitude in radians,
R is the radius of the generating globe,
A_{1} to A_{5} and B_{1} to B_{5} are coefficients given below:

Coefficients for X		Coefficients for Y	
A_{1}	0.870700	$\mathrm{~B}_{1}$	1.007226
$\mathrm{~A}_{2}$	-0.131979	$\mathrm{~B}_{2}$	0.015085
$\mathrm{~A}_{3}$	-0.013791	$\mathrm{~B}_{3}$	-0.044475
$\mathrm{~A}_{4}$	0.003971	$\mathrm{~B}_{4}$	0.028874
$\mathrm{~A}_{5}$	-0.001529	$\mathrm{~B}_{5}$	-0.005916

For inverting the projection, Newton's method is used for computing the latitude φ from the Y coordinate. The longitude λ is then calculated from the X coordinate.

