

Cartography Lab Autumn Semester 2017
Institute of Cartography and Geoinformation, ETH Zurich

Cesium vs. ArcGIS API for JavaScript

An assessment of the usability of virtual globe

toolkits to create an animated 3D web scene

Author: Lisa Stähli, MSc Geomatics Engineering

staehlli@student.ethz.ch

Examiner: Prof. Dr. Lorenz Hurni

Supervision: Dr. Christian Häberling, Raimund Schnürer

 Zurich, 30.09.2017

mailto:staehlli@student.ethz.ch

2

Content

1. Introduction ... 3

2. Goals ... 3

3. Data .. 4

A. Basemap ... 4

B. Thematic Data ... 4

4. Technology .. 5

A. Hardware ... 5

B. Software .. 5

5. Methods .. 6

A. Layout and Design ... 6

B. Data Preparation ... 6

C. Set up for Web Apps ... 7

D. Implementation of Use Cases .. 7

D1. Use Case 1: Displaying and symbolizing a large dataset of 3D features 8

D2. Use Case 2: Add a customized base map and elevation layer 8

D3. Use Case 3: Temporal and non-temporal animation of 3D features 9

E. Implementation of additional features ...10

F. Comparison of Developer Resources ...10

6. Results ...13

A. Data modeling and processing ...13

B. Symbolization ...13

C. Visualization ...14

7. Conclusion ...15

8. Bibliography..15

9. Appendix ..16

A. Terms of data contract with Amt für Städtebau, city of Zurich (German)16

B. General Comparison ..17

C. Application/Demos for Cesium ...18

D. A selection of images from the prototypes ..19

3

1. Introduction

A well-grounded and systematic comparison between 3D Web Mapping APIs that is also up-

to-date is currently missing in the field of Web Cartography. This might be explained by the

fast-paced development of JavaScript APIs in general and by the fact that the creation of 3D

web maps requires a specific technical knowledge and in general a greater effort in comparison

to creating 2D maps. The 3D representations of data on the web increasingly gain importance

in Web Cartography and users feel the need to explore the available technologies including

JavaScript APIs – both open source such as Cesium as well as closed source solutions such

as the ArcGIS API for JavaScript that requires an Esri license to use all functionalities. There

are other 3D Mapping APIs like WebGL Earth, that only has a small community, wrld.js (former

eegeo.js) which is not yet technologically as advanced as other APIs, or the Google Earth API

which has been shut down earlier this year. However, Cesium and ArcGIS API for JavaScript

are considered to be the two most advanced and established 3D Web Mapping APIs currently

available on the market.

2. Goals

This project aims to compare two different 3D Mapping Javascript APIs (Cesium and ArcGIS

API for JavaScript). The two APIs are pursuing varying approaches of data modeling and

processing, symbolization and visualization. Due to the fact that one shouldn’t compare apples

to oranges, a fair comparison between the two APIs can only be done by implementing

identical use cases and oppose the resulting applications. Therefore, the comparison will be

done by implementing two prototypes that are as similar as possible and that showcase a 3D

animation of the settlement development of the city of Zurich from 1850 to 2030 (including

future planned settlements).

The 3D scenes constructed in the prototypes are featuring a low-key base map as well as 3D

buildings that are displayed and color-coded depending on their construction year. Therefore,

the prototype includes a timeline slider with a play/stop button for the animation. The 3D scene

needs to be fully interactive (spatial navigation enabled). Additionally, a legend decodes the

building colors. The implementation of the prototypes targets the following common use cases:

• Use Case 1: Displaying and symbolizing a large dataset of 3D features

• Use Case 2: Add a customized base map (WMS) and elevation layer (terrain tiles)

• Use Case 3: Temporal animation of 3D features

The prototypes will be developed as HTML5 Web Apps that will at least work properly in

Google Chrome. Eventually, the apps will be hosted on an ETH internal web server. Before

constructing the prototypes, the APIs are also going to be compared to each other concerning

general information (e.g. hardware requirements, application fields, supported data formats)

as well as developer resources (e.g. API reference, tutorials, and samples).

The comparison addresses everyone in the field of 3D Web Cartography that is interested in

finding out advantages and disadvantages of the two most common 3D Web Mapping APIs.

Eventually, the comparison aims to support the decision-making for or against one of the

toolkits. However, the comparison does not cover all aspects or functionalities of both APIs

and therefore does not pursue to be complete.

4

3. Data

A. Basemap
The base map consisted of an elevation layer and a base map imagery layer. The elevation

layer was provided by the City of Zurich as a digital terrain model (DTM) in a tif-format (see

Appendix A). As a base map imagery layer, a Web Map Service (WMS) called

“Uebersichtskarte_2016” was selected and accessed through the Open Data Portal of the City

of Zurich. A grayscale base was chosen to not draw too much attention to it. Additionally, the

publicly available “ESRI - World Light Gray Basemap” has been used as a base map due to

technical issues with implementing a WMS layer in one of the prototypes.

B. Thematic Data
The thematic data consisting of building footprints (LOD 2.5) has been provided by the Amt für

Städtebau, City of Zurich (see Appendix A). The footprints are coming with a height attribute

that allowed for an extrusion to a 3D-object. Another attribute called “status” was used to

determine existing buildings (status = “real”) and future upcoming buildings. For buildings with

the status “erstellt” (built) a construction year of 2016 was assumed, for the status

“freigegeben” (permitted) the construction year was forecasted to 2018 and for buildings with

status “eingereicht” (submitted) the construction year was set to 2020.

Additionally, the City of Zurich provided a table with construction years of most (92%) of the

buildings ranging from 1100 to 2015 that has been joined over the EGID (building id) attribute

in ArcGIS Pro with the building footprint geometries.

5

4. Technology

A. Hardware
The development of the prototypes has been executed on a Laptop (Lenovo ideapad Y700)

with the following hardware specifications:

Processor i7-6700HQ CPU @ 2.60 GHz

OS Windows 10

Graphics Card NVIDIA GeForce GTX 960M (4GB)

Memory (RAM) 16 GB

Storage 1 TB

Table 1: Hardware Specification of Developer Laptop

B. Software
The following client-side software has been used to implement the prototypes:

• Cesium (1.37): 2D, 2.5D and 3D (virtual globe) Mapping API

• ArcGIS API for JavaScript (4.5): 2D and 3D (virtual globe, local scene) Mapping API

A list with general information aboug the two APIs can be found in Appendix B.

Additionally, the following JavaScript libraries have been used to create UI components:

• Bootstrap (+jQuery): HTML, CSS, and JS code designed to help build user interface

components (e.g. buttons)

• noUISlider: a lightweight and freely available JavaScript range slider with additional

functionalities (styling, interactivity) as opposed to the HTML5 input range

• wNumb: for number formatting, helper methods for the slider

For the server-side software, the following setup has been used for development:

The Web Apps can run on any web server (e.g. Apache, IIS). The Cesium prototype will run

on a Node.js web server for development and the ArcGIS API for JavaScript prototype runs on

an IIS (Microsoft Internet Information Services) web server for development. Additionally, to

access the WMS-Layer, the HTTP request needs to go through a proxy. Therefore, a .Net

proxy has been set up that is running on an IIS web server as well.

For data processing, the following software has been used:

• FME 2017.1: to generate 3D Tiles used in Cesium

• ArcGIS Pro 1.4.1: for joining and extruding footprints and generate Scene Layer

Packages as well as Tile Packages that are uploaded to ArcGIS Online

https://github.com/AnalyticalGraphicsInc/cesium
https://developers.arcgis.com/javascript/
http://getbootstrap.com/
https://refreshless.com/nouislider/
https://refreshless.com/wnumb/
https://www.iis.net/
https://data.stadt-zuerich.ch/dataset/uebersichtsplan
https://github.com/Esri/resource-proxy
https://github.com/Esri/resource-proxy
https://www.safe.com/fme/fme-desktop/
http://www.esri.com/de/arcgis/products/arcgis-pro/overview

6

5. Methods
The following explanations can be seen as a step-by-step guide on how the prototypes have

been built as well as how the comparison of the developer resources has been done.

Resources that have been used in the process of data preparation and implementation are

included as hyperlinks directly in the explanations.

A. Layout and Design
The layout of the prototypes was not the biggest concern in this project, as the focus was on

the implementation. Nevertheless, layout sketches have been made beforehand and a default

layout has been implemented for both prototypes that featured a landing page that serves as

an imprint and includes a general description of the project. From there, both prototypes can

be accessed that have the same user interface featuring a header in dark blue with a title in

white as well as a footer in dark blue that includes the timeline slider with year dates indicating

the range held in white and orange. The footer also has a play/stop button in white and orange.

The progress on the timeline slider was marked with filling the slider in orange whereas the

rest of it stayed white. The main viewport has an overlay of the selected year date at the bottom

left in dark blue (so it is visible against mostly orange buildings), a simple legend at the bottom

right (see figure 11) and navigation tools (default placement). The final layout can be seen in

figure 7-10 in Appendix D.

The colors of the buildings match the UI colors. Already built buildings are held in orange

whereas the buildings of the selected construction year or shown in dark blue. Future buildings

are displayed in a dark orange. The 3 colors have been selected as a color triad. Additionally,

buildings with no construction year were colored in light grey and with 50% transparency.

Design dark blue orange dark orange light grey white

color

hex #034e7b #FFA500 #FF6939 #d3d3d3 #ffffff

Table 2: UI color selection

B. Data Preparation
First, the data sets have been processed in ArcGIS Pro. The building footprints have been

joined with the construction year table over attribute EGID (unique building id). With this 2D

layer, the below explained steps needed to be performed for the two APIs in order to have data

ready to be loaded in a web scene:

ArcGIS API for JavaScript Cesium

In ArcGIS Pro, the 2D Layer of the building
footprints need to be moved to the 3D Layers
group in the contents panel (therefore a 2D map
needs to be converted to a 3D map over View >
Convert). There, the appearance of the feature
layer can be adjusted and an extrusion based on
an attribute (height) can be applied. As a next
step, the 3D layer needs to be converted to a
Multipatch feature class with the 3D Analyst tool
“Layer 3D to Feature Class”.

The 3D layer is exported as a Scene Layer
Package (.slpk) from ArcGIS Pro with the data
management tool “Create Scene Layer
Package”. The slpk-file can then be uploaded as
an item (from Computer) in the ArcGIS Online
content panel. It will then be published as a

The 2D layer is imported to FME (Reader of type
Esri GDB) and with a transformer of type
extrusion the polygons will be extruded to the
amount of the height attribute. Then, a Writer of
type Cesium 3D Tiles is attached to the
transformer that will write the 3D Tiles to a
predefined folder. After finishing the writing, the
folder will contain a tileset.json with an object for
each tile that describes a bounding box and
points to the location of the data file. The data
files are in the data folder and are in a b3dm-
format (Cesium proprietary format).

The tileset can be saved as a local folder and
loaded with the path to that folder in the
application.

7

hosted Scene Layer and accessible through the
API with an URL pointing to tiles.arcgis.com.

Three layers have been published to ArcGIS
Online for the ArcGIS API for JavaScript app:

1. Buildings with construction_year = null (8%)

2. Buildings with defined construction year and
STATUS = “real” (already built)

3. Buildings with STATUS = “erstellt” or
“freigegeben” or “eingereicht” (just been built, in
construction or in consideration for construction)

This was done to make filter conditions and
renderers easier in the application (explained
below in chapter D).

For the Cesium app only one tileset was needed
to be generated.

Apart from the building layers, also the DTM has been preprocessed. The steps are explained

in chapter D2 as this belongs to a use case.

C. Set up for Web Apps
The index.html for both prototypes are created first with a default setup and then need to have

the noUISlider and wNumb-references (files have been downloaded and are loaded with local

path) in order to create the time slider. Next, the APIs need to be referenced as well.

For the set-up of the web applications a couple of things need to be considered for the APIs:

ArcGIS API for JavaScript Cesium

The folder with the code for the app can be linked
to any web server. This prototype was hosted on
an IIS-webserver. To set-up an IIS web server,
this Windows feature first needs to be activated.
Then, IIS Manager can be started and a new
website can be linked with the folder. The app is
then running on localhost with the selected port.

The Cesium API (master branch) needs to be
downloaded or cloned on GitHub. Additionally,
Node.js needs to be installed on your computer.
Then, with npm install, all dependencies are
installed. Next, the node server (web server) can
be started (node server.js) and the app will then
be running on localhost with port 8080.

The ArcGIS API for JavaScript needs two
references in the index.html: A stylesheet with the
main.css and the API code itself. The stylesheet
needs to be placed first in the head, then the
slider APIs and finally your own CSS code. The
API reference comes after the dojo config.

Cesium needs two references in the index.html
that point to the local Build cesium-file (script tag)
and which is on top of the header (before slider
API references) and to the local Widget cesium-
file (URL imported in script tag) which comes after
the slider APIs and sets the viewport for the app.

As the ArcGIS API for JavaScript comes along
with the Dojo Framework, the HTML5 app also
features a Dojo Module Loader as well as a config
file. Therefore, the app.js (prototype code) is
loaded with “require” in the head.

The app.js (prototype code) is linked with a script
tag at the end of the body.

Apart from the UI components, the body contains
a div for the view of the application.

Apart from the UI components, the body contains
a div for the cesium container.

D. Implementation of Use Cases
First, the general application is set-up by creating the default scene within the UI component.

The following table explains the default set-up of app.js:

http://doc.arcgis.com/en/arcgis-online/share-maps/publish-scenes.htm
https://www.youtube.com/watch?v=jZXKjJYLH1Y
https://cesiumjs.org/downloads/
https://developers.arcgis.com/javascript/latest/guide/get-api/index.html
https://cesiumjs.org/tutorials/cesium-up-and-running/
https://dojotoolkit.org/

8

ArcGIS API for JavaScript Cesium

An initial scene view is created by first loading the
required modules with dojo-define in the app.js.
The modules to get started are “esri/Map”,
“esri/views/SceneView”. First, the map is created
with a base map and a ground (e.g. world-
elevation), then the scene view is constructed
that is linked to the view div (DOM Node) and the
map from above. Navigation tools are default UI
components. Additionally, the home button
(widget) was added to the UI.

Each layer needs to be individually popup
enabled or disabled to get rid of pop-up windows.

The initial viewer can be created in Cesium with
1 line of code and with the viewer constructor that
is linked to the cesium container div (DOM Node).
However, as the UI of the prototype was required
to be as clean as possible, all default UI
components in the viewer have been disabled,
including timeline, animation, baseLayerPicker,
selectionIndicator and infoBox (corresponds to
pop-up window).

D1. Use Case 1: Displaying and symbolizing a large dataset of 3D features

ArcGIS API for JavaScript Cesium

The 3D datasets are loaded as SceneLayers to
the application with an URL to the ArcGIS Online
resource.

The tileset is loaded as a Cesium3DTileset to the
application with a link to the local tileset top-folder
(not data folder).

The scene layer is symbolized and styled with
properties (e.g. opacity) as well as renderers.
Renderers are applied directly to the layer and
contain drawing information. In this prototype,
each layer has a SimpleRenderer that features a
symbol of type MeshSymbol3D. MeshSymbol3D
is used to render 3D mesh features in a
SceneLayer and has a symbol layer of type
FillSymbol3DLayer attached to it. The symbol
layer defines properties like material color. Colors
can be rgb, rgba, hex or string values.

The styling of the tileset can be done with the
Cesium3DTileStyle that inherits properties like
color and visibility (show). The expression can
include rgb-color, rgba-color, hex or string values.

For advanced and customized symbolization,
other renderers such as UniqueValueRenderer
which assigns colors based on attributes or
ClassBreaksRenderer can be used. With
visualVariables numeric attributes can be
visualized with start and stop values and linear
color ramps.

For advanced and customized symbolization, the
Cesium3DTileStyle can evaluate expressions
defined using the 3D Tiles Styling language. The
color property can be defined based on an
attribute value. However, all attributes and
corresponding colors need to be assigned
manually.

D2. Use Case 2: Add a customized base map and elevation layer

ArcGIS API for JavaScript Cesium

For displaying the elevation layer, the DTM first
needs to be published as a hosted elevation layer
on ArcGIS Online for which a tile package needs
to be created in ArcGIS Pro. The tile package can
be added as an item in ArcGIS Online and then
loaded into the application as an ElevationLayer.
The elevation layer then needs to be added to the
ground layers of the scene. The layer will
seamlessly fade into the existing elevation model
around it.

For displaying a terrain in Cesium, the cesium-
terrain-builder can be used, a C++ library and
associated command line tools designed to
create terrain tiles for use in Cesium.

To prevent buildings vanishing below the terrain,
the terrain provider needed to be switched off
completely in the prototype and all buildings were
at the same height. Additionally, the height of the
whole tileset had to be adjusted by -48m because

https://developers.arcgis.com/javascript/latest/sample-code/get-started-sceneview/index.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-Map.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-views-SceneView.html
https://developers.arcgis.com/javascript/latest/sample-code/widgets-home/index.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-layers-SceneLayer.html#popupEnabled
https://developers.arcgis.com/javascript/latest/api-reference/esri-layers-SceneLayer.html#popupEnabled
https://cesiumjs.org/tutorials/Cesium-Workshop/#creating-the-viewer
https://cesiumjs.org/Cesium/Build/Documentation/Viewer.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-layers-SceneLayer.html
https://cesiumjs.org/Cesium/Build/Documentation/Cesium3DTileset.html?classFilter=3DTileset
https://developers.arcgis.com/javascript/latest/api-reference/esri-renderers-Renderer.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-renderers-SimpleRenderer.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-symbols-MeshSymbol3D.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-symbols-FillSymbol3DLayer.html
https://cesiumjs.org/Cesium/Build/Documentation/Cesium3DTileStyle.html?classFilter=3DTileSty
https://developers.arcgis.com/javascript/latest/api-reference/esri-renderers-UniqueValueRenderer.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-renderers-ClassBreaksRenderer.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-renderers-UniqueValueRenderer.html#visualVariables
https://github.com/AnalyticalGraphicsInc/3d-tiles/tree/master/Styling
http://doc.arcgis.com/en/arcgis-online/share-maps/publish-elevation-layers.htm
http://pro.arcgis.com/en/pro-app/help/sharing/overview/tile-package.htm#GUID-853C5B89-8C83-4C0B-A7F1-03300218E6C2
https://developers.arcgis.com/javascript/latest/api-reference/esri-layers-ElevationLayer.html
https://github.com/geo-data/cesium-terrain-builder
https://github.com/geo-data/cesium-terrain-builder
https://cesiumjs.org/Cesium/Build/Documentation/CesiumTerrainProvider.html?classFilter=terrainProv

9

the buildings would otherwise float over the
surface.

For displaying a customized base map from a
WMS, it can be loaded as a WMSLayer in the
ArcGIS API for JavaScript. The layer can have
sublayers with which you can access a specific
layer in a WMS. It can be added directly to the
scene. To request a WMS, a proxy needs to be
set up for the application.

For displaying an imagery layer from a WMS in
Cesium, the WebMapServiceImageryProvider
can be used. This provider takes properties such
as the URL of the WMS, parameters (e.g. format),
layers and the proxy.

Esri provides files with which a proxy (.NET, Java,
PHP) can be set up. For the prototype, a .NET
proxy was set up as described in the README
file (e.g. convert the folder to an application in the
IIS to start proxy). Even though the proxy was
running and could be used from another
application, the set-up with the Dojo Module
Loader caused problems with the WMS and
therefore would not show in the SceneView.

Cesium provides a default proxy that can be used
in development mode with the node web server.

D3. Use Case 3: Temporal and non-temporal animation of 3D features

For both prototypes, the animation of the features has been linked to the timeline slider which

was created with the noUISlider API. The timeline is listening to both inputs from users

dragging the handle to a certain year and the play/stop button. The play button lets the timeline

start moving for the currently selected year and the stop button stops the animation. Both

interactions trigger a function called timelineAnimation in the code which starts the animation

of the buildings. The play button additionally initializes an interval with a 2-second loop.

The temporal part of the animation was to make sure that the correct buildings are displayed

in the viewport for the selected year, which means the already constructed buildings are shown

as well as the ones built in the exact selected year. For the non-temporal part, the buildings

needed to be animated when appearing for the selected year. This animation should be a

height animation, so it should look like the buildings are growing from the ground up to their

actual height. The following explanations describe how those two parts were implemented

differently with the APIs:

ArcGIS API for JavaScript Cesium

For temporal animation, the ArcGIS API for
JavaScript provides so-called
definitionExpressions on layers which can be
used to filter the layers.

The definition expression on the layer can take an
SQL expression to query the REST endpoint in
ArcGIS Online, e.g. “status = ‘real’”.

The first attempt to make the animation work was
using a FeatureLayer with only building footprints
instead of a SceneLayer. Unfortunately, the
definition expression caused the FeatureLayer to
always reload completely when a new year was
selected or jumped to in the animation. As this
has a negative impact on the user experience, the
FeatureLayer has been replaced with a
SceneLayer.

For temporal animation, the Cesium tileset could
be filtered with the show property of the
Cesium3DTileStyle that can take conditions
based on attributes.

It is here important to always apply style changes
as a new tile style (new Cesium3DTileStyle) that
also still has all color properties from before,
otherwise, the tileset will not reload properly.

https://developers.arcgis.com/javascript/latest/api-reference/esri-layers-WMSLayer.html
https://cesiumjs.org/Cesium/Build/Documentation/WebMapServiceImageryProvider.html?classFilter=WebMapServiceImageryProvider
https://github.com/Esri/resource-proxy
https://cesiumjs.org/Cesium/Build/Documentation/DefaultProxy.html?classFilter=default
https://developers.arcgis.com/javascript/latest/api-reference/esri-layers-FeatureLayer.html#definitionExpression
https://developers.arcgis.com/javascript/latest/api-reference/esri-layers-FeatureLayer.html
https://cesiumjs.org/Cesium/Build/Documentation/Cesium3DTileStyle.html?classFilter=3DTileSty

10

For the non-temporal animation, it was initially the
idea to apply an ExtrudeSymbol3DLayer to the
layer with continuously changing height values
(size). Unfortunately, this symbol layer does not
support 3D symbols and feature layers could not
be used, so the second part of the animation
could not be implemented.

For the non-temporal animation, the tileset was
animated by shifting all tiles of a second tileset
that only showed the tiles from the exact selected
year. Therefore, another interval was set with a
20ms loop which triggers the tileset height to
change. The shifting is done with a translation on
the model matrix of the tileset and was based on
the Adjust Height sample.

E. Implementation of additional features

ArcGIS API for JavaScript Cesium

A dynamic legend can be added with the Legend
Widget where the layers, that should appear in
the legend, can be defined with their respective
layer names.

As there is no legend widget in Cesium, a legend
had to be created manually.

To change the initial position of the view, the
method goTo can be used on the view that can
take various inputs, e.g. position (x, y, z, latitude,
longitude), heading and tilt.

To change the initial position of the camera, in
Cesium the camera can be triggered with a flyTo
method that takes destination (WGS84-
coordinates) and orientation (heading, pitch, roll)
as inputs.

For a better quality of the visualization, the
SceneView can draw scenes in a high quality by
adding the property qualityProfile with value
“high” to the view. Additionally, ambient occlusion
and direct shadows can be enabled over the
views environment property.

In Cesium, the visualization of the sky and the
lighting can be adjusted with the skyAtmosphere
property of the viewer.

F. Comparison of Developer Resources
Resources that are available for developers are crucial especially for users that have just

started using an API. The more resources that are available and the higher their quality, the

more likely a user will find a solution to a problem. Additionally, a well-documented API causes

user to keep using it for future projects.

The following developer resources could be found online (status: 18.06.17) for the two APIs:

ArcGIS API for JavaScript Cesium

API Reference API Documentation

Samples Sandcastle/Samples

Guide/Tutorials Tutorials

GeoNet-Community Forum Cesium Community Forum

Blog Blog

Table 3: Available developer resources for both APIs

For further investigation, the API Reference/Documentation, as well as samples and tutorials

as the most important resources, have been analyzed and categorized to see the amount of

available information as well as which topics are covered more than others. Samples and

tutorials are used as resources for developers but are also an indicator of what wants to be

emphasized and explained to future developers and what was increasingly asked for from the

existing community.

https://developers.arcgis.com/javascript/latest/api-reference/esri-symbols-ExtrudeSymbol3DLayer.html
https://cesiumjs.org/Cesium/Build/Documentation/Matrix4.html
https://cesiumjs.org/Cesium/Apps/Sandcastle/?src=3D%20Tiles%20Adjust%20Height.html&label=3D%20Tiles
https://developers.arcgis.com/javascript/latest/api-reference/esri-widgets-Legend.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-widgets-Legend.html
https://developers.arcgis.com/javascript/latest/api-reference/esri-views-SceneView.html#goTo
https://cesiumjs.org/Cesium/Apps/Sandcastle/?src=Camera%20Tutorial.html&label=Showcases
https://developers.arcgis.com/javascript/latest/api-reference/esri-views-SceneView.html#qualityProfile
https://developers.arcgis.com/javascript/latest/api-reference/esri-views-SceneView.html#environment
https://cesiumjs.org/Cesium/Build/Documentation/SkyAtmosphere.html?classFilter=skyAtm
https://developers.arcgis.com/javascript/latest/api-reference/index.html
https://cesiumjs.org/refdoc/
https://developers.arcgis.com/javascript/latest/sample-code/index.html
https://cesiumjs.org/Cesium/Apps/Sandcastle/
https://developers.arcgis.com/javascript/latest/guide/index.html
https://cesiumjs.org/tutorials/
https://geonet.esri.com/community/developers/web-developers/arcgis-api-for-javascript
https://cesiumjs.org/forum/
https://blogs.esri.com/esri/arcgis/tag/javascript/
https://cesium.com/blog/

11

Both the capabilities from the API Reference/Documentation and the samples and tutorials

have been categorized in the following 16 categories:

Nr. Category Description

1 Overview A broad overview of all functionalities, applications, etc.

2 Getting started How to use the API (embedding and installation instructions)

3 Programming General information about programming patterns used

4 Interoperability Instructions on how to combine with other APIs, frameworks, etc.

5 Data Management Instructions on how to convert or use different data formats

6 Layout Styling, CSS, User Interface, GUI Elements

7 Widgets Ready-to-use or customized widgets

8 Visualization How to visualize, display and transform data (renderers, symbols)

9 Navigation How to use views, camera, and key inputs to manipulate navigation

10 Geometry How to draw geometries

11 Editing How to manipulate geometries

12 Geoprocessing Calculate spatial components/patterns, apply changes

13 Interaction How to interact with the displayed data, e.g. popup/info window content

14 Debugging Tools to help to debug an application

15 Query Filter and query data

16 Projection Instructions of how to project data from one spatial reference to another

Table 4: Categories for comparison of API Reference capabilities and samples/tutorials

The capabilities can be classes, methods or properties that are documented and described in

the API reference. What has been counted as a capability, are individual web pages in the API

Reference that are dedicated to a specific class or method. The analysis consisted of summing

up how many pages are documented for each of the categories which have developed

organically while going through the pages and samples/tutorials. With this approach, the API

Reference of the ArcGIS API for JavaScript has been compared to the Cesium API

Documentation and the guide and samples for the ArcGIS API for JavaScript have been

compared to the Cesium Sandcastle examples.

The following chart shows an overview of all the developer resources that have been analyzed.

It depicts that there are more samples and tutorials available for the ArcGIS API for JavaScript,

but almost double as many API Reference pages available for the Cesium API.

Figure 1: Number of available developer resources for both 3D Mapping APIs

The analysis of the API Reference shows that both APIs lay a big focus on data management

and visualization whereas Cesium has more resources available about interaction, geometry

0

100

200

300

400

500

Tutorials Samples API Reference

Developer Resources

ArcGIS JS API Cesium

https://developers.arcgis.com/javascript/latest/api-reference/index.html
https://developers.arcgis.com/javascript/latest/api-reference/index.html
https://cesiumjs.org/refdoc/
https://cesiumjs.org/refdoc/
https://developers.arcgis.com/javascript/latest/guide/index.html
https://developers.arcgis.com/javascript/latest/sample-code/index.html
https://cesiumjs.org/Cesium/Apps/Sandcastle/

12

as well as general programming/debugging topic. The ArcGIS API for JavaScript, on the other

hand, has a bigger emphasis on geoprocessing and widgets. Also, proportionally there are

more resources available for visualization topics in this API.

Figure 2: Comparison between categories of API Reference capabilities

The Cesium API has a lot of samples and tutorials available in the category interoperability

which can be explained by many Google Earth API migration tutorials. The ArcGIS API for

JavaScript, on the other hand, has a focus on widgets, visualization and data management

with many tutorials about how to load data from ArcGIS Online or Portal and on how to style

layers.

Figure 3: Comparison between categories of samples and tutorials

0 20 40 60 80 100

Widget

Visualization

Query

Projection

Programming

Navigation

Layout

Interoperability

Interaction

Geoprocessing

Geometry

Debugging

Data Management

API Reference

Cesium ArcGIS JS API

0 5 10 15 20 25 30 35 40

Widgets

Visualization

Query

Programming

Overview

Navigation

Layout

Interoperability

Interaction

Get started

Geoprocessing

Geometry

Editing

Debugging

Data Management

Samples and Tutorials

Cesium ArcGIS JS API

13

6. Results
The following chapter provides an analysis and summary of the implementation steps with a
comparison of general approaches of the two APIs. The structure of this chapter follows the
categories in the process of designing 3D web maps according to [3].

A. Data modeling and processing
Both APIs have developed their individual standards for 3D formats. Cesium uses 3D-Tiles
whereas the ArcGIS API for JavaScript uses the Esri i3s standard. Both standards have been
going through an OGC Community Standard Process [4] and i3s (Indexed 3D Scene Layers)
has just recently been approved as an official OGC Standard [5] which also includes the Scene
Layer Package that has been used in the prototypes. From a top-level perspective, the two
standards do not differ much. They both are based on a tree-like structure (bounding volume
tree hierarchy) of retrieving tiles (3DTiles) or nodes (i3s) with relevant data. They both support
3D objects, points and meshes (quantized mesh in 3D-Tiles and integrated mesh in i3s).
Differences can be found in indexing, styling, and possibility of translation of tiles.

The main difference between the two APIs is how they handle the loading of 3D data in the
web page. Cesium typically loads the local 3D-tiles (even though they can also be loaded from
an external cloud, e.g. Amazon Cloud) and saves them in the cache and streams only visible
tiles and those tiles which are most important for a given 3D view. The ArcGIS API for
JavaScript, on the other hand, hosts the data on the cloud and streams it dynamically based
on what is currently visible in the view port. The streaming and loading in the scene are faster
for first loading with the ArcGIS API for JavaScript (but highly depended on the quality of the
internet connection), for navigation, after the first loading, it is faster for the Cesium Application.
One big advantage of the 3D-Tiles is the possibility to transform tiles and move tilesets which
came in handy for the animation of buildings in the prototype.

Another difference can be found in the way different zoom levels are represented. Whereas
zooming out in the Cesium 3D-Tiles does not cause the geometries to change and immediate
and fast zooming in does not result in generalizations of the features (e.g. aggregate vertices),
in the ArcGIS API for JavaScript application these “loading errors” can occur (see figure 4).

Figure 4: Features before and after properly loaded after zooming in and out

In the Cesium application, on the other hand, the tileset disappears completely at a certain
zoom level which of course also occurs in the ArcGIS API for JavaScript application but it takes
a higher zoom level (probably when all vertices coincide into one). It seems, this problem is
handled differently in the two APIs.

B. Symbolization
The concept of renderers and symbols is a very particular one for the ArcGIS API for
JavaScript. The so-called Smart Mapping paradigm found its way into almost all Esri platforms
and is widely used and appreciated by users. It supports the design and styling of maps

https://github.com/AnalyticalGraphicsInc/3d-tiles
https://github.com/Esri/i3s-spec
https://blogs.esri.com/esri/arcgis/2016/03/28/using-smart-mapping-in-custom-web-apps/

14

especially for users that do not have a cartographic, data science or design background or that
just need to make quick visualization or even simply want to explore their data sets.

However, compared to the simplistic Cesium approach of condition-based styling with the
3DTileStyle, the renderers and symbols seem almost a bit too complicated. For users that are
new to the ArcGIS API for JavaScript, the variety of renderers, symbols and symbol layers can
be quite confusing and if the wrong symbol or symbol layer is applied to a layer, no visualization
will be shown at all. Additionally, there is not much guidance coming from the console if wrong
symbols are used. An error message indicating that a symbol was used that is not supported
by the layer type would be useful.

On the other hand, the ArcGIS API for JavaScript provides a lot of different data visualization
options and makes advanced styling fairly easy. Especially data-driven continuous color
visualizations are easy to create with a few steps which would require a lot more thinking and
preparing from the user for the Cesium approach.

C. Visualization
A general comparison of the visualization results has been made between the two screenshots
in figure 5. For the building symbolization, exactly the same colors have been used. The first
impression is, that the Cesium Application looks much darker. First, this might be explained by
the fact that the lighting in the Cesium web globe is based on the time of the day. However,
the picture has been captured at various times of the day (including noon) and the darkness
or color of the buildings did not change at all. What did change is the color of the sky. It might
be that 3D Tiles would need an additional pre-defined property about the material and how
light is reflected. Also, shadows are not cast because there is no terrain provider.

Also, the camera position and orientation seems to be a bit different on this screenshot. This
can be explained by either the fact that the Cesium App does not have a terrain or by different
camera models (e.g. field-of-view).

Figure 5: Comparison of rendering results of similar viewing points (captured at 5 pm)

The ArcGIS API for JavaScript offers more options for scene rendering whereas Cesium
provides many options to change the appearance of the sky. This can probably be explained
by the fact that Cesium originally evolved from the space industry where atmospheric
parameters are considered to be important to be changed.

https://developers.arcgis.com/javascript/latest/sample-code/layers-scenelayer-vv-color/index.html
https://developers.arcgis.com/javascript/latest/sample-code/layers-scenelayer-vv-color/index.html

15

7. Conclusion
The comparison of the APIs was challenging but worth investigating. Both APIs provide a lot

of options and most of their approaches concerning implementation are very different.

Therefore, it makes sense that users are not willing to switch back and forth on the two

depending on their use case but that they stick with either one of them after learning it.

The following table is a summary of this study investigating both APIs for the specific use cases

and sum up the author’s experience working with the APIs:

 ArcGIS API for JavaScript Cesium

Highlights Beautiful visualizations/rendering
Fast streaming and filtering
Great resources (easy, appealing)
Data hosting on the cloud

Open Source
Fast streaming of 3D-Tiles (in cache)
Big and active community
Tileset can be transformed
Easy styling and filtering of 3D-Tiles

Lowlights Data hosting on the cloud (not
suitable for sensitive data)
Moving of features not possible

Resources partly very technical
Visualizations could be more
sophisticated

Table 5: Highlights and lowlights of the study comparing both APIs

As a very general conclusion, deciding on one or the other API depends highly on the user

preferences and style. A pure developer will probably rather go with Cesium as the resources

are not a challenge and open source is more accessible. A cartographer (or designer) might

want to rather go with the ArcGIS API for JavaScript as visualizations look better and there

are a lot of common cartography tools and widgets already built in and easy to create (e.g.

Legend Widget, UniqueValueRenderer).

To sum up, both APIs are very powerful and in constant development and therefore suitable

to build all sorts of 3D web scenes. Hopefully, the will influence each other in a positive way in

the future by implementing the most promising features and methods on both platforms.

8. Bibliography
Most of the references have been made directly in the text as hyperlinks due to simplicity.

[1] ArcGIS API for JavaScript Discover 4.0 the Next Generation, Presentation at Esri Developer

Summit 2016.

Link: http://www.esri.com/videos/watch?videoid=5024&isLegacy=true&title=arcgis-api-for-javascript-

discover-40-the-next-generation (17.06.2017)

[2] About Cesium. Link: https://cesiumjs.org/about.html (17.06.2017)

[3] Häberling, Christian (2003). Topografische 3D-Karten: Thesen für kartografische

Gestaltungsgrundsätze. Doctoral Thesis.

[4] The OGC Community Standard Process (15.02.2017). OGC Blog.

Link: http://www.opengeospatial.org/blog/2543 (28.09.2017)

[5] OGC approves Community Standard for streaming 3D Content (06.09.2017). Press Releases.

Link: http://www.opengeospatial.org/pressroom/pressreleases/2639 (28.09.2017)

http://www.esri.com/videos/watch?videoid=5024&isLegacy=true&title=arcgis-api-for-javascript-discover-40-the-next-generation
http://www.esri.com/videos/watch?videoid=5024&isLegacy=true&title=arcgis-api-for-javascript-discover-40-the-next-generation
https://cesiumjs.org/about.html
http://www.opengeospatial.org/blog/2543
http://www.opengeospatial.org/pressroom/pressreleases/2639

16

9. Appendix

A. Terms of data contract with Amt für Städtebau, city of Zurich (German)
Im Zusammenhang mit dem Projekt Kartographie-Lab (Studentenprojekt) „Cesium vs. ArcGIS JS API“

benötigt der Nutzer die in diesem Vertrag aufgeführten Geodaten. Bezüglich der Nutzung der

Geodaten vereinbaren die Parteien folgendes:

1. Die im Datenverzeichnis aufgeführten Geodaten (vgl. Anhang) sind Gegenstand dieses Vertrages

und werden an den Nutzer in elektronischer Form unentgeltlich abgegeben.

2. Die abgegebenen Daten werden für folgendes Projekt genutzt:

Kartographie-Lab (Studentenprojekt) „Cesium vs. ArcGIS JS API“

3. Die zur Verfügung gestellten Geodaten dürfen ausschliesslich für das oben erwähnte Vorhaben

genutzt werden; sie dürfen auf Datenträgern des Nutzers verwaltet, genutzt, ausgewertet, verändert,

kopiert und gelöscht werden.

4. Das Recht zur Nutzung der erwähnten Geodaten erlischt nach Abschluss der erwähnten Arbeiten.

5. Nach Abschluss der Arbeiten müssen alle zur Verfügung gestellten wie auch davon abgeleiteten

Geodaten von allen Datenträgern des Nutzers gelöscht werden. Die zur Verfügung gestellten

Geodaten sind vollständig an den Datengeber zurückzugeben.

6. Weitergehende oder von diesem Vertrag abweichende Nutzungen der Geodaten müssen zuvor mit

dem Datengeber schriftlich vereinbart werden.

7. Der Nutzer geniesst keine Ausschliesslichkeit für die Nutzung der Daten.

8. Der Dateninhalt und die Datenstruktur können vom Datengeber nach Bedürfnis und ohne vorherige

Rücksprache mit dem jeweiligen Nutzer geändert werden.

9. Sämtliche Rechte an den abgegebenen Geodaten verbleiben beim Datengeber.

10. Alle abgegebenen Geodaten sowie daraus abgeleitete Daten sind vertraulich zu behandeln. Diese

Daten dürfen ohne Genehmigung des Datengebers weder Dritten zugänglich gemacht noch

weitergegeben werden. Jede Veröffentlichung (analog oder digital) setzt das schriftliche

Einverständnis des Datengebers voraus.

11. Der Nutzer bestätigt mit seiner Unterschrift, dass ihm bekannt ist, dass er im Rahmen der Nutzung

der abgegebenen Geodaten die eidg. und kantonalen Vorschriften zum Datenschutz zu beachten hat.

12. Der Datengeber gewährleistet die Gültigkeit der unveränderten Geodaten für den Ausgabetag, der

auf dem Datenträger angegeben ist. Jeder Eingriff in den Datensatz hebt die Gewährleistung für den

ganzen Datensatz auf. Abgegebene Datensätze können nicht nachgeführt werden.

Datenaktualisierungen bedingen einen Neubezug aller Geodaten.

13. Der Nutzer bestätigt mit seiner Unterschrift, dass er darauf hingewiesen wurde, dass eine diesem

Vertrag oder den gesetzlichen Vorschriften zuwiderlaufende Nutzung der Geodaten strafrechtliche

Folgen haben kann.

14. Die Parteien einigen sich darauf, dass auf das Vertragsverhältnis nur schweizerisches Recht

anwendbar ist.

15. Ausschliesslicher Gerichtsstand ist Zürich.

16. Dieser Vertrag wird 2-fach ausgefertigt (1-mal für Datengeber; 1-mal für Nutzer).

17

B. General Comparison
The following table shows a general comparison between the two APIs based on the

information that is available on the web.

 ArcGIS API for JavaScript 4.4 Cesium 1.32

Project Start 2013 [1] 2011 [2]

Founder Esri Inc Analytical Graphics, Inc (AGI)

Operator Esri Inc AGI, Open Source Community

Description “JavaScript API that integrates 2D
and 3D into a single, easy-to-use,
powerful API”

“an open-source JavaScript library for
world-class 3D globes and maps”

Supported
Browsers

Chrome
Firefox
Edge
IE11* (no WebGL)
Safari 9 and later

Chrome
Firefox
Edge
IE 11
Safari

Hardware
Requirements

2 GB system memory and a video
graphics card that supports WebGL,
nonmobile graphics card with at least
512 MB of video memory

WebGL support

How to get
started for
development

1. Include CDN in your HTML
2. Set up a web server (any)
3. Open website (e.g. localhost)
4. Start modifying your code

1. Download Cesium (zip-File)
2. Set up web server (Node.js)
- Install Node.js
- npm install
- start node server.js
3. Open localhost:8080 (default)
4. Start modifying the available code
(HTML, CSS, JS)

Data Processing Convert and upload your datasets to
ArcGIS Online or ArcGIS Portal by
either publishing with ArcGIS Pro or
uploading a zipped FileGDB or
Scene Layer Package (generated in
ArcGIS Pro)

Convert to CZML with a QGIS Plugin
or convert to 3DTiles with FME/other
plugins

Most common
Application
Fields

Urban Planning, Education and Data
Exploration (Story Maps)

Space Geodesy, Aviation,
Photogrammetry, Sports Tracking,
Real-Time Data, Real Estate
Management, Education, and
Exploration, Urban Planning (see
Appendix C)

Support for Web, (Mobile, Tablets) Web, Mobile, VR, Tablets

Proprietary Data
Formats

Esri FileGDB, Shape, Scene Layer
Package (i3s)

CZML, quantized-mesh, 3DTiles

Supported
external Data
Formats,
Standards,
Libraries and
Frameworks

in general, various data formats but
need to be converted in ArcMap/
ArcGIS Pro beforehand, additionally
within the API: GeoJSON,
OpenStreetMap

gITF, GeoJSON, TopoJSON, Collada,
ArcGIS ImageLayer, WMS, TMS,
WMTS, OpenStreetMap, Bing Maps,
ArcGIS MapServer, Google Earth
Enterprise (KML)

Supported
Libraries and
Frameworks

React, React-Redux, Riot, Angular 1,
Vue and a plugin for Ember

Leaflet, OpenLayers

Table 6: General information of the two APIs compared to each other

18

C. Application/Demos for Cesium
List of Applications/Demos developed in Cesium (to extract most important application fields)

• High-Resolution 3D Models with photorealistic textures

• Satellite Tracking Measurements and Imagery Availability

• Exploring Mars

• Swiss Federal Geoportal (spatial infrastructure data)

• Real-time flight tracking

• Drone surveys and inspections

• Advanced data analytics

• Orbit Logic Collection Planning, Flight Planner for Satellites, UAVs, Radar, etc.

• Real-Time Data Visualization (e.g. Twitter Streams, Weather Forecasts)

• LiDAR Point Clouds (billions of points)

• Visualizations of natural phenomena (earthquakes, hurricanes, storms, weather, groundwater

well)

• Crowdsensing (e.g. reporting wildfires)

• Paragliding / Skydiving Logbook and other Sports Analytics (sailing races, downhill skiing,

GPS Tracks, cycling)

• Waterway Information

• High-resolution streaming “smart” 3D Buildings (CyberCity 3D)

• OpenWebGIS (calculate and analyze data)

• Planning and Management (e.g. forestry, airspace planning, tactical scenarios)

• 3D Virtual Drone Flights (with Google Cardboard and Oculus Rift)

• Education and Exploration (earth science, geography, maps, historical data)

• Car Navigation

• Real Estate Management, Office Space Search (Cube Cities)

• Solar Radiation Potential

19

D. A selection of images from the prototypes

Figure 6: Landing page with imprint and project description

Figure 7: Start page of ArcGIS API for JavaScript application

Figure 8: Start page of Cesium application

20

Figure 9: ArcGIS API for JavaScript application with future buildings (on title page)

Figure 10: Cesium application with future buildings (on title page)

Figure 11: Legend Design (left: ArcGIS API for JavaScript (Widget), left: Cesium (manual))

