Ergänzende kartografische Funktionen für Illustrator CS

Die am Institut erstellten kartografischen Funktionen sind als Plugins in das Grafikprogramm Illustrator CS integrierbar. Sie werden laufend erweitert und sind in der Home Page des Instituts unter *Dienstleistungen > Downloads > Plugin's für Illustrator >Plugins für Illustrator CS 2 (12)* als ZIP - File verfügbar. Die Plugins sollten in einem Unterordner, z.B: *plg12_CS2*, in den Ordner *Plug-ins* abgelegt werden. Wärend des Transfers darf Illustrator nicht geöffnet sein! Auf keinesfalls dürfen Plugins gleichen Namens mehrfach unter der Hierarchie *Plug-ins* vorhanden sein, deshalb: Immer den ganzen Ordner *plg12* ersetzen. In den folgenden sieben Anwendungsbeispielen werden die meisten der verfügbaren Funktionen eingesetzt. Abschliessend werden noch alle unter Illustrator CS (12) einsetzbaren Plugins kurz vorgestellt.

Beispiel 1 Thema: Aus unbereinigten Daten Flächen bilden beteiligte Plugins: Selected.aip aufgerufen durch Window > KAR Dialogs > Show Inform Dialog keepSelectedByGeometry.aip Filter > Data Harmonization > Keep Paths selected by Geometry connectPath.aip Filter > Data Harmonization > Connect Paths Messages.aip Window > KAR Dialogs > Show Messages Dialog Filter > Data Harmonization > Adaption to one Path Adaption.aip snapPoints.aip Filter > Data Harmonization > Snap Points Filter > Data Harmonization > Set Nodes By Disconnect Path Objects setNodes.aip AreaBuilder.aip Filter > Data Harmonization > AreaBuilder Beispiel 2: Importierte Daten reduzieren Selected.aip Window > KAR Dialogs > Show Inform Dialog PointElimination.aip Filter > Data Harmonization > Point Elimination (excl. Nodes) Window > KAR Dialogs > Show Messages Dialog Messages.aip AreaNodes.aip Filter > Data Harmonization > Restore Area Nodes LineToBezier.aip Filter > Data Harmonization > Line To Bezier Filter > Data Harmonization > Bezier To Line BezierToLine.aip Beispiel 3: Bestehende Karte verbessern PointElimination.aip Filter > Data Harmonization > Point Elimination (excl. Nodes) Filter > Data Harmonization > Line To Bezier LineToBezier.aip

PointElimination (excl. NodesLineToBezier.aipFilter > Data Harmonization > Line To BezierAdaption.aipFilter > Data Harmonization > Adaption to one PathsnapPoints.aipFilter > Data Harmonization > Snap PointsconnectPath.aipFilter > Data Harmonization > Connect Paths

Beispiel 4: Anpassen durch zirkulare Transformation specialMove.aip Messages.aip LineToBezier.aip Rectify.aip Filter >

× >

Nindow > KAR Dialogs > Show Messages Dialog
Filter > Data Harmonization > Line To Bezier
Filter > Data Harmonization > Rectify closed Path

Beispiel 5: Lokale Transformation mit gewichteten Vektoren AdjustMaps Dialog.aip Window > KAR Dialogs > Show Einpassen Dialog

Reispiel 6: Strukturraster

Delippier of Strutturuster		
IrregularPattern.aip	Filter >	Thematic Maps > Irregular Pattern
selectInsideArea.aip	Filter >	Data Harmonization > Select Inside Area
keepSelectedByName	e.aip Filter >	Data Harmonization > Keep Selected By Name
selectBySameGeome	try.aip Filter >	Data Harmonization > Select By Same Geometry
placeSymbols.aip	Filter >	Thematic Maps > Place Symbols

Beispiel 7: Thematische Karten (THM)	
Messages.aip	Window > KAR Dialogs > Show Messages Dialog
Thm_Diagrams.aip	Filter > Thematic Maps > Diagrams
triangleMakeClasses.aip	Filter > Thematic Maps > Create Triangle
snapPoints.aip	Filter > Data Harmonization > Snap Points
closePaths.aip	Filter > Data Harmonization > Close Path Objects

Beispiel 8: Symbole und Diagramme (THM)		
Thm_Diagrams.aip	Filter >	Thematic Maps > Diagrams
selectBySameGeometry.aip	Filter >	Data Harmonization > Select By Same Geometry
placeSymbols.aip	Filter >	Thematic Maps > Place Symbols

Beispiel 9: Flächen aus Punktwolken, Gebäude bearbeiten			
	PointCluster.aip	Filter >	Thematic Maps > PointCluster
	selectBySameGeometry.aip	Filter >	Data Harmonization > Select By Same Geometry
	Rectify.aip	Filter >	Data Harmonization > Rectify closed path
	generalizeBuildings.aip	Filter >	Data Harmonization > Generalize Buildings

Beispiel 10: Angleichen von Symbolen an offene Path *adjustSymbols.aip* Filter > Thematic Maps > Adjust Symbols

Seite 1

Beispiel 1: Aus unbereinigten Daten Flächen bilden

Bereinigung der Topologie

Auch für das Auge perfekte Karten weisen in ihren Daten oft eine überraschend hohe Anzahl Fehler auf. Bei einer Weiterverwendung mit einem GIS würden diese inkonsistenten Daten zu grossen Schwierigkeiten führen und wären dort nur umständlich zu bereinigen. Da sie kaum oder nicht sichtbar sind, können diese Fehler auch mit Illustrator- Funktionen nur mit viel Aufwand behoben werden.

<B1Start.ai>

Zunächst wollen wir über die beteiligten Objekte eine Übersicht gewinnen:

Window > KAR Dialogs	>	Show	Inform	Dialog
----------------------	---	------	--------	--------

Einpassen: Messag	jes Selec	ted 💽
Update Info Total number of object Object types	:ts:	73
Simple pathes:	62 closed:	2
straight: 48	Bezier:	14
Compound objects: Groups:	0	
Layers:	7	
Contents		
Vertices:	542	
Paths within compour	id objects:	0

Die selektiert verbleibenden Objekte werden verifiziert und entsprechend gelöscht. Von den Kopien (3) wird nur eine entfernt (Grenzen im See).

Filter > Data Harmonization > Keep Paths selected by Geometry

	Keep paths selected by geometry			
	Alle selektierten Path- Objekte werden auf ihre geometrische Anordnung geprueft. Alle nichtzutreffenden Objekte werden deselektiert,			
	Geometrische Auswahl:			
	🔲 Geschlossene Path- Objekte			
1	🔽 Path- Objekte mit nur einem Punkt			
2	Zu kleine Paths? Quadratseite< 0.5 mm			
3	Verdeckte Path- Objekte (Strokes)			
4	Echte Untermengen von Path- Objekten (Fragmente?)			
5	Aufeinanderfolgende, lagegleiche Punkte loeschen?			
	Sollen die geloeschten Punkte markiert werden?			
	Cancel OK			

Selbstverständlich werden in der Praxis die hier vorgenommenen fünf Tests nacheinander durchgeführt.

Die für die einfache Grafik immer noch hohe Zahl (53) an Path- Objekten und eine genauere Kontrolle zeigen, dass mehrere Gemeindegrenzen und Flüsse bei gleichen Strichstärken unnötigerweise aufgeteilt sind.

Bereinigung der Grafik

Filter > Data Harmonization > Connect Paths

Connect Paths
Spezielle Knoten , 'Zuflussknoten', bestehen aus der Verknuepfung zweier Path- Objekten mit gleicher Symbolik und Layerzugehoerigkeit mit einem Path unterschiedlicher Symbolic und Layerzugehoerigkeit.
Bei diesen Knoten koennen die Path- Objekte mit den identischen Attributen, wie Seeufer, Hauptfluesse etc., verbunden werden oder sie bleiben getrennt.
🗂 Sollen die Path getrennt bleiben?
Cancel OK

Window > KAR Dialogs > Show Messages Dialog

18 Paths werden zu 8 Paths zusammengesetzt.

Für eine anschliessende geometrische Bereinigung ist dieses Zusammenfassen von Paths mit gleichen Layer, Strichstärke und Farbe unumgänglich.

An den mit Pfeilen gekennzeichneten Stellen sollen die Gemeindegrenzen an die Flüsse angepasst werden.

An **ein** Fluss- Path können mehrere Grenz- Path angeglichen werden.

Filter > Data Harmonization > Adaption to one Path

Path- Objekte anpassen		
Geschlossene oder offene Path-Elemente werden an e in durch einen Layernamen spezifiziertes Path angepasst.		
Aktive Distanz:	0.5 mm	
Moegliche Referenzlayer:	Fluesse (locker)	
	Cancel OK	

Flussabschnitt (jeweils aus einem Path bestehend) für Flussabschnitt wird die Karte abgearbeitet. Bei Verwendung von Bezierkurven müssen die Verzweigungen kontrolliert und gegebenenfalls durch Verändern der Tangenten nachgebessert werden.

Bei dieser Selektion werden nur die Gemeindegrenzen als Referenzlayer angezeigt. Der Fluss erscheint nicht, da dieser als Gruppe aus zwei verschieden dicken Paths besteht und deswegen nicht zusammengefasst werden konnte. In dieser Situation muss zwingend das rechts angeordneten *Direkt Auswahl Werkzeug* benützt werden.

Generell sollten nur die zur Anpassung benötigten Paths selektiert werden.

Ein weiteres Problem sind die grafisch scheinbar einwandfreien Verzweigungen.

Die hier aufgezeigte Abweichung verhindert später eine komplette Erzeugung von Gemeindeflächen.

Mit einem 'Snapping' aller Punkte um eine kleine Weite

von z.B. 0.1 mm werden solche Konflikte beseitigt.

Filter > Data Harmonization > Snap Points

Snap Points
Punkte verschiedener Objekte werden entweder durch Ausmitteln oder durch 'ansnappen' an Objekte geschuetzter Layer bewegt.
Die Snapdistanz(radial) sollte geringer als das kuerzeste Pathsegment sein. Distanz in mm:
Sollen die 'gesnappten' Punkte markiert werden?
Cancel OK

An zwölf Positionen wurden 29 Punkte bewegt. Es empfiehlt sich die entsprechenden Stellen zu markieren.

Nach einer sorgfältigen Überprüfung sollten die Markierungen wieder gelöscht werden.

3

Da jedes Path mit jedem Path zu prüfen, rasch zu einer sehr hohen Laufzeit führen kann, versucht man diese einzuschränken. Mit 15 werden von jedem Path aus die topologisch 15 nächsten Path- Objekte zur Flächenbildung beigezogen. Werden bei korrekten Daten einzelne Flächen nicht erzeugt, so ist dieser Wert zu erhöhen. Bei 10 werden bei diesem Beispiel nicht alle Flächen gebildet.

Eine weitere Absicherung vor zu langen Laufzeiten ist ein vorgegebener, ungefährer Zeitrahmen, in diesem Beispiel 10 Sekunden. Falls nichts ausgeführt wird, erfährt man die vorzugebende Laufzeit und entsprechenden Ratschläge via Messages.

Für die Flächenbildung müssen an den Verzweigungen Knoten gebildet werden, d. h. der Walensee und verschiedene Grenzlinien werden zerlegt. Mit den *Gemeindegrenzen* gemeinsam verlaufende *Fluesse (dicht, mittel, locker)* sind zu schliessen, da sie sonst segmentweise zerlegt würden und zur anschliessenden Flächebildung nichts beitragen könnten. Nur *Gemeindegrenzen* und *Seen (locker)* bleiben offen.

Filter > Data Harmonization > Set Nodes By Disconnect Path- Objects

Set Nodes By Disconnect Path- Objects	
Falls Ankerpunkte verschiedener Pathobj werden die Pathobjekte aufgetrennt. Geschlossene Path werden geoeffnet.	ekte identische Positionen aufweisen,
📃 Layer mit geschuetzten Objekten?	Kantonsgrenzen 💌
🔽 Markieren der neuen Knoten	Cancel OK

Nach einer eingehender Überprüfung der neuen Knoten sollte diese wieder entfernt werden.

Filter > Data Harmonization > AreaBuilder

AreaBuilder
Zur Flaechenbildung werden alle moeglichen Kombinationen getestet. Jedoch nur die innersten Flaechen werden generiert. Um die Laufzeiten ertraeglich zu gestalten, sollte die Anzahl der Objekte moegichst gering gehalten und die Geometrie vorher mit 'Point Elimination' und 'Connect Path' bereinigt werden!
Layer fuer erzeugte Flaechen: Gemeindeflaechen
Wieviel Objekte vom zu untersuchenden Objekt enfernt sollen noch fuer die Flachenbildung beruecksichtigt werden?
Maximale Laufzeit in Sekunden, welche Sie in Kauf nehmen? 10
Cancel OK

Beispiel eines "Ratschlages"

Einpassen: Messages Selected 💽
Update Messages
68 Plugin AreaBuilder
Messages
WARNUNG
Die Ausfuehrung wuerde zu lange dauern,
ca. 4000 Sekunden
Bitte weniger selektieren resp.
kleinere Objektweite eingeben
oder Vorgabezeit erhoehen!.

Eine Gemeindefläche wurde nicht erzeugt und ein Grenz- Path war nicht wirksam! Zur Behebung der Ursachen müssen die beteiligten Knoten überprüft werden.

An diesen zwei Positionen fehlen die zur Flächenbildung notwendigen Knoten.

Die Snapweite von 0.1 mm war dafür zu gering. Eine geeignetere grössere Snapweite z. B. 0.5 mm hätte zu grosse Änderungen im Grenzverlauf verursacht.

Vorteilhafter ist es zwei neue Punkte mit de zu digitalisieren und diese mit einer Snapweite von 0.1 mm anzupassen (Filter > Data Harmonization > Snap Points) und danach mit

Filter > Data Harmonization > Set Nodes By Disconnect Path- Objects die entsprechende Grenze aufzutrennen. Nach dieser Nachbearbeitung sollte eine erfolgreiche Flächenbildung möglich sein.

Mehrfach übereinander gelagerte Flächen sind leicht mit der Transparenz- Funktion erkennbar. Einfach die mehrfach überdeckte Fläche zu entfernen, würde das Problem nicht lösen. Meistens sind einige Knoten und/oder einige Grenz- Path nicht korrekt.

Zuletzt sind noch die Paths des Walensees zu selektieren und mit Filter > Data Harmonization > ConnectPaths zusammenzufügen. Dieser Datensatz wird in den Beispielen 7 und 8

für eine thematische Karte weiterverwendet.

Beispiel 2: Importierte Daten reduzieren

Der kleine Ausschnitt einer Bodenkarte überrascht durch seine grosse Punktmenge. In diesem Beispiel versuchen wir die Punktmenge zu verringern und einerseits als Bezierkurven für eine Karte zur Verfügung zu stellen und andererseits in Form von linearen Daten für ein GIS aufzubereiten.

<B2Start.ai>

Einpassen: Messages Selec	:ted 💽
Update Info Total number of objects: Object types Simple pathes: 126 open: 0 closed: straight: 126 Bezier:	127
Compound objects: 0	10
Layers: 1	
Contents	
Vertices: 213	362
Paths within compound objects:	0

167 Punkte für diese Fläche sind zu viel.

Filter > Data Harmonization > Point Elimination (excl. Nodes)

Point Elimination excl. Nodes	
Richtungsunabhaengiges Entfernen von Punkten.	
Knotenpunkte (Zusammenfuehrungen von zwei oder mehr werden nicht geloescht.	eren Pathenden)
Maximale Abweichung, bei der noch geloescht wird: entspricht der Hoehe des Dreieckes P[j-1], P[j], P[j+1]	0.1 mm
Winkelabweichung in Altgrad:	30
🔲 Sollen die geloeschten Punkte markiert werden?	
	Cancel OK

Mit einer maximalen Abweichung von 0.1 mm erzielen wir eine Reduktion auf 18 Punkte, obwohl Segmente mit einer Winkeländerung > 30 Grad als wichtig eingestuft sind und damit nicht gelöscht werden. Auf den gesamten Ausschnitt übertragen, erreichen wir eine beträchtliche Einsparung.

Einpassen: Messages Selected
4 PlugIn PointElimination
Messages
Anzahl bearbeiteter Paths: 126
Anzahl geschuetzter Flaechenknoten: 229
Anzahl geloeschter Punkte: 14714

Beispiel 2 Seite 2

Für die Einarbeitung in eine Karte wollen wir Bezierkurven

Filter > Data Harmonization > Line To Bezier

Line To Bezier	
Tangentenauspraegung (0.0: keine; 1.0: maximal)	0.8
Glaettung (0.0: keine; 1.0: maximal)	0
🗖 Kontinuitaet – Stetige Kurven aus verschiedenen Path	
🔲 Verzweigungen – Z.B.: Fluss in See oder Fluss in Fluss	
Snapping (mm): Nur wirksam bei Kontunitaet und/oder Verzweigung!	0.01 mm
Unstetigkeit bei Winkelaenderung > [in Altgrad]:	45
	Cancel OK

Mit einer leichten Reduzierung der Tangenten erreichen wir ein annehmbares Ergebnis. Bei der Interpolation werden die Knoten nicht berücksichtigt. Es kommt daher zu störenden Überschneidungen.

Mit dem Filter

Filter > Data Harmonization > Restore Area Nodes werden die Knoten bereinigt.

Ein GIS- Export verlangt meistens lineare Objekte.

Filter > Data Harmonization > Bezier To Line

Nach einer Reduzierung um ca. 15000 Punkten können für eine GIS- Weiterbearbeitung zusätzliche ca. 800 Punkte zugemutet werden.

Beispiel 3: Bestehende Karte verbessern

Bestehende Karten können durch Arbeitsschritte, wie Filtern, Reduzieren, Interpolieren, Vernetzen, Ersetzen, Restrukturieren, Zusammenfassen, etc. verbessert werden. In diesem Beispiel werden anhand eines Ausschnitts aus einer Wanderkarte zwei solche Operationen durchgeführt:

- Wald erstzen und
- Fusspfade (Strichlierung) zusammenfassen.

Wald ersetzen

Dieser Wald wird als Orientierungshilfe als zu undifferenziert empfunden, deshalb werden die Waldobjekte aus dem Datensatz *Vektor 25* übernommen und in die Karte eingearbeitet. Zunächst verschieben wir zwei Waldobjekte in die bestmöglichste Position und schalten die Füllung aus. Den zu detailreichen Wald vereinfachen wir mit

Filter > Data Harmonization > Point Elimination (excl. Nodes)

Mit Filter > Data Harmonization > Line To Bezier werden alle Segmente interpoliert, welche eine Winkelabwichung < 40 Grad aufweisen (B2 S2).

Line To Bezier	
Tangentenauspraegung (0.0: keine; 1.0: maximal)	1
Glaettung (0.0: keine; 1.0: maximal)	0
🗖 Kontinuitaet - Stetige Kurven aus verschiedenen Path	
C Verzweigungen – Z.B.: Fluss in See oder Fluss in Fluss	
Snapping (mm): Nur wirksam bei Kontunitaet und/oder Verzweigung!	0.01 mm
Unstetigkeit bei Winkelaenderung > [in Altgrad]:	40
	Cancel OK

Beispiel 3 Seite 2

Als nächstes soll das linke Waldobjekt an eine der Strassen angepasst werden.

Das Plugin

Filter > Data Harmonization > Adeption to one Path

ermöglicht das Anpassen mehrer Path- Objekte an **einen** Referenz- Path. Die Anpassungen müssen folglich interaktiv nacheinander vorgenommen werden, in diesem Beispiel in zwei Etappen.

Im Weiteren sind noch eventuell Korrekturen an einzelnen Segmenten (Punkte) vorzunehmen. Die Füllfarbe von Ebene <50.0 Wald 8> muss nach <Wald25> übertragen, das Objekt <50.0 Wald 8> gelöscht, die <Wald25> Kontur ausgeschaltet und die Ebene <Wald25> in die Nähe der Ebene <50.0 Wald 8> geschoben werden, damit die Strasse auf den Waldrand zu liegen kommt.

Beispiel 3 Seite 3

Fusspfade zusammensetzen

Alle sichtbaren Teile der Fusspfade bestehen in dieser Karte aus einzelnen Path- Objekten. Für eine Weiterverarbeitung oder für den Export in ein GIS sollte ein Fusspfad aus **einem** Path bestehen.

Sobald alle Ebenen ausser <506.0 Footpath 26> geschlossen sind und die entsprechenden Fusspfad-Objekte selektiert sind, setzen wir vier Plugins in folgender Reihenfolge ein:

- Punkte 'Snappen' mit

Filter > Data Harmonization > Snap Points Siehe B1 S3 und B7 S6

mit den Dialogeingaben:

- Kein Layer wird geschützt,
- Snapdistanz = 0.7 mm und
- 'gesnapte' Punkte werden nicht markiert
- Verbinden offener Path- Objekte zu einem Path Filter > Data Harmonization > Connect Paths Siehe B1 S2
- Löschen überflüssiger Punkte durch Filter > Data Harmonization > PointElimination (excl. Nodes) mit den Dialogeingaben 0.15 mm und 90 Grad.

- Interpolieren

Die Strichlierung wird via *Dashed Line* mit *dash* = 1 mm und gap = 0.7 mm eingestellt.

Selbstverständlich muss bei komplizierten Anordnungen in kleineren Interaktionschritten vorgegangen werden.

Seite 1

Beispiel 4: Anpassen durch zirkulare Transformation

In diesem Kartenbeispiel passen Landesgrenzen (rot) und Kantonsgrenzen (magenta) nicht zum übrigen Karteninhalt. Ziel dieses Anwendungsbeispiels ist es, in den Randbereichen den Karteninhalt an die genaueren Grenzlinien anzupassen. Lineares Verschieben oder der Einsatz von Filter > Data Harmonization > Adeption to one Path würde die vorhandenen Verzweigungen (Knoten) zerstören. Um diese Art von Problemen rasch und

pragmatisch lösen zu können, wurde das Plugin *<spezialMove.aip>* entwickelt. Dieses wird durch zwei Werkzeuge gesteuert.

Mit dem Kreiswerkzeug wird der Wirkungsbereich radial definiert. Der Pfeil verschiebt alle selektierten Punkte, abnehmend vom Startpunkt des betätigten Pfeilwerkzeugs. Der Startpunkt ist das Zentrum des Wirkungsbereiches. Die Abnahme der Verschiebungswirkung ist linear (andere Funktionen wären denkbar, z.B. Gauss'sche Verteilung). Der aktuelle Radius des Wirkungsbereiches kann mit Window > KAR Dialogs > Show Messages Dialog abgefragt werden.

Einpassen: Messages Selected
Update Messages
23 Plugin Range for Special Move
Radius des Anwendungsbereiches: 20.55

Im nebenstehenden Versuch ist zu ersehen, dass der Wirkungsbereich zu klein gewählt wurde. Ausserdem muss der Startpunkt der Verschiebungsoperation nicht mit dem Zielpunkt des anzuvisierenden Objektes übereinstimmen.

Mit einer groben Näherung Radius = 50 mm, abgetastet am Lineal und einer feineren Korrektur mit 30 mm, erreicht man das nebenstehende Ergebnis. Nach einiger Übung findet man rasch den richtigen Wirkungsbereich und die geeigneten Ansetzpunkte für das Verschieben. Auch bei diesem Plugin ist der UNDO- Effekt gewährleistet!

Die Verschiebungen werden, wenn selektiert, auch bei den Gebäuden wirksam und zwar für jeden Punkt abhängig von seiner Position. In anderen Worten: Die Gebäude sind nicht mehr rechtwinklig. Mit Filter > Data Harmonization > Rectify closed path können die Gebäude wieder rechtwinklig ausgerichtet werden.

Beispiel 5: Lokale Transformation mit gewichteten Vektoren

B5Start.ai

In diesem Beispiel wird davon ausgegangen, dass es bei der Anpassung zweier Datenbestände aus unterschiedlichen Quellen und eventuell verschiedener Massstäbe, Objekte gibt, welche in beiden Datensätzen vorkommen und referenziert werden können. In den meisten Fällen sind dies Flusseinmündungen in grössere Flüsse oder Seen. Hier sollen die blauen Kartenelemente (1 : 500000) an die schwarzen (1 : 200000) angepasst werden. Einfachheitshalber beschränken wir wir uns ausschliesslich auf das Gewässer. Selbstverständlich sollen mit dieser Transformation nur die grösseren Abweichungen korrigiert werden. Die massstabsbedingte Generalisierung muss im Wesentlichen erhalten bleiben.

Ausgeführt wird diese Transformation mit dem Plugin:

Window > KAR Dialogs > Einpassen

Messages Selected Einpassen: Knotennadius: 0.5 Snapweite: 0.1 Referenzknoten ermitteln 0.1 Knotennadius: 0.5 Snapweite: Einzupassene Knoten ermitteln Knoten neu aufnehmen Laenge: Vektoren ermitteln 2.0 Einpassen. Aktionsnadius: 100.0 Knoten ausblenden, Winkelbereich: 30.0 Gruppen als Symbole Einpassen

Wir selektieren zunächst das Referenzgewässer vec200_gewl und ermitteln die Referenzknoten (blau), dann selektieren wir das einzupassende Gewässer Seen (locker) und Flüsse (dicht) und ermitteln die einzupassenden Knoten (rot).

Überflüssige Referenzknoten stören nicht (1), soweit sie den Knotenpaaren nicht zu nahe kommen, da nur die am nächsten zueinander stehenden Knoten für die Vektorbildung herangezogen werden. Knoten, welche einem Knotenpaar (Vektor) zu nahe kommen (2), müssen interaktiv gelöscht werden.

Als nächstes berechnen wir die Vektoren aus den Koordinatenpaaren. Damit nicht aus weitauseinanderliegenden, nicht zueinander gehörenden Knoten Vektoren ermittelt werden, muss eine maximale Suchweite definiert werden (hier Länge = 2mm). Dies heisst jedoch auch, dass Paare die zueinander gehören würden und weiter als dieser Schwellwert auseinanderliegen, nicht berück-

sichtigt werden. Die Vektoren werden in der neu erzeugten Ebene *MARKIERUNG Vektor,* als Path (schwarz) abgelegt.

9-**5**

Der abschliessende Schritt ist das eigentliche Einpassen. Auch hier können Schwellwerte aktiv werden:

- Ein Aktionsradius schränkt f
 ür jeden zu transformierenden Punkt die Anzahl wirksamer Vektoren ein.
- Wenn Knotenpaare (Vektoren) hinter einem anderen Knotenpaar (a) liegen, können sie ganz (c,d) oder teilweise (b,e) ausgeblendet werden.

- Da im Normalfall alle Punkte

einzeln transformiert werden, erfahren Symbole eine Verzerrung. Mit dem Einschalten 'Gruppen als Symbole', können in einem separaten Durchgang alle selektierten Gruppen gesamthaft (unverzerrt) bewegt werden.

 Inhaltsreiche, komplexe Karten können kachelweise abgearbeitet werden. Dafür werden im voraus Rechtecke in der Ebene Arbeitsbereich angelegt.
 Diese Ebene wird entweder interaktiv oder mit der ersten Aktivierung dieses Plugins erzeugt

Objekte, welche durch keine eigene oder nur sehr entfernte Vektoren beeinflusst werden, erfahren keine zufriedenstellende Transformation. In diesen Fällen können sowohl Referenz- wie auch einzupassende Knoten interaktiv an geeignete Positionen kopiert oder verschoben werden. Zusammen mit den bisherigen Knoten selektiert, werden sie neu registriert,

Knoten neu aufnehmen die aktuellen Vektoren ermittelt Vektoren ermitteln Laenge: 2.0

und die Zieldaten neu eingepasst.

Weitere, individuelle Anpassungen konnen auch mit der zirkularen Transformation (B4 S1) ausgeführt werden.

Es sei nochmals darauf hingewiesen, dass generalisierungsbedingte Abweichungen nicht unbedingt aufgehoben werden müssen.

Beispiel 6: Strukturraster

Strukturraster werden in der Kartografie eher vernachlässigt behandelt und enthalten oft wiederkehrende Muster (Tapeten) und angeschnittene Symbole. Individuelle Lösungen sind in der Regel nicht möglich. Mit Filter > Thematic Maps > Irregular Pattern wurde ein Programm entwickelt, das die obigen Nachteile weitgehend beseitigt. Von diesem Programm aus, können auch Programme für sehr spezifische Strukturraster abgeleitet werden, wie Geröllflächen, Kiesgruben, Böschungen, etc.

Filter > Thematic Maps > Irregular Pattern

Symbol: in % Grunda Sumpf **1**00 Snalte Obstbaeume Niederstamm Obstbaeume Hochstamm Rebstoecke Gebuesch Laubwald Nadelwald Sumpf

Symbol Definition -

Symboldefinitionen (-referenzen) bestehen jeweils aus einer Gruppe mit einem oder mehreren Path-Objekten. Unterebenen und/oder Gruppenhierarchien sind innerhalb

einer Symboldefinition nicht gestattet.

Für jedes Symbol das abgebildet werden soll, muss ein Anteil in % bestimmt werden. Soll nur ein Symboltyp wirksam sein, wird ihm ein Anteil von 100% zugeteilt. Mit dem Tabulator kann nach jeder Eingabe abgeschlossen und auf das nächste Feld gesprungen werden. Die Differenz zu 100% wird im Feld Rest in % nach jedem Tabulator nachgeführt.

Das Vorkommen der ausgewählten Symboltypen wird so zufallsverteilt, dass in jeder Zielfläche in etwa die Anteile stimmen. Je grösser die Fläche, d.h. je mehr Symbole pro Fläche, je genauer wird die vorgegebene Verteilung erreicht. Nachdem die Referenzsymbole ausgewählt sind, muss noch die Anordnung des Rasters festgelegt werden:

SYMBOL_1 Das Referenzsymbol, ein gefüllter Kreis mit dem

Mit den gegebenen Dialogeinstellungen und einer Füllflache (Ried) wird dieses

Raste

0

0

0

Bei grosser Variation (>50%) und bei relativ grossen Symbolen in Bezug zu den Gitterweiten, kommt es zu Überdeckungen. Mit der Option: Entflechten, können diese Überdeckungen wieder aufgehoben werden. Berührungen zwischen den Symbolen werden durch die minimalen Symbolabstände vermieden.

Symbole (grün, Strich) werden bei allen Abstandsberechnungen nur mit ihrer rechtwinkligen Hülle berücksichtigt. Da Bezier - Segmente ausschliesslich als gerade Verbindungen (grün, strichliert) mit einbezogen werden, würde hier die Hülle auf das schwarz strichlierte Rechteck reduziert. Symbole mit Beziersegmente sollten daher durch zusätzliche Punkte (rot) ergänzt werden, um so eine exaktere Hülle (schwarz, Strich), zu erhalten.

In einer Programmausführung können Flächen nur einer Ebene mit Symbolen gefüllt werden. Von den selektierten Objekten werden nur die geschlossenen Paths und Compounds berücksichtigt. Zu den Flächenränder besteht ein eigenes Abstandskriterium.

Alle selektierten Objekte der anderen Ebenen werden als Hindernisse betrachtet und erhalten ebenfalls ein eigenes Abstandskriterium.

Die Strichstärken der Füllflächen, wie auch die der Hindernisse, werden mitberücksichtigt. Hier sei nochmals darauf hingewiesen, dass Bezierkurven wie geradlinige Verbindungen verarbeitet werden!

Meistens wird die Option: Entflechten = Ja benützt. Falls nicht, finden Überdeckungen statt:

Das Programm bedient sich zweierlei Entflechtungsmethoden: Auseinanderziehen, wenn viel Raum vorhanden ist oder auf die Gitterpunkte zurückbewegen, wenn eine dichte Plazierung definiert ist.

Jede Entflechtung kann wieder zu weiteren Überdeckungen führen, die dann vom Programm wieder weiterbearbeitet werden müssen. Dicht gefüllte, grosse Flächen verursachen hohe Laufzeiten. Eine Warnung mit einer nachfolgenden Ausführung macht auf solche Grenzsituationen aufmerksam. Wenn eine Verarbeitung aussichtslos ist, wird vorher mit einer Fehlermeldung abgebrochen. Die in diesem Versuch gesetzten Parameter werden dann nicht gespeichert.

In einem vereinfachten Kartenausschnitt wird versucht, verschiedene Strukturraster in Anwendung zu bringen. In einer Tabelle werden die wichtigsten Parameter festgehalten.

<B6Start_V1.ai>

Referenzsymbole (zweifach vergrössert): ∧ ♀ ¬ Ⅰ • • -

Ebene der Füllfläche	Referenzsymbol	Grund- anordnung	Spalten- abstand	Zeilen- abstand	Variat Horizontal	ion in % Vertical	Abständ Symbol	e zwischen Syr Flächenrand	mbol zu Hindernis	Wird Füllflä dargestellt?	che
Reben	Rebstöcke	diagonal	2.4 mm	2.0 mm	0	0	0 mm	0 mm		Ja	*1
Obstgarten	Obstbäume Niederstamm	diagonal	1.5	1.0	0	0	0	0		Nein	*2
Streuobst	Obstbäume Hochstamm	*3 orthogonal	4.0	4.0	80	80	0.2	0	0.3	Nein	
Wald	*4 Gebüsch Laubwald Nadelwald	*3 diagonal	6.0	6.0	80	80	0.2	0.3	0.3	Ja	
Ried	Sumpf	diagonal	5.5	1.5	100	100	0.1	0.2	0.2	Nein	

*1: Bei den Reben ist auch das Anschneiden der Symbole gebräuchlich

*2: Für Strukturaster wie Obstgärten wäre eine Ausrichtung nach der Vorzugsrichtung der Füllfläche nützlich.

*3: orthogonale oder diagonale Ausrichtung möglich

*4: Jedes Waldstück hat seine eigene Zusammensetzung mit Symboltypen und deren Anteilen, daher wird getrennt verarbeitet.

<B6_V1.ai>

Die Reihenfolge, wie die einzelnen Füllflächen abgearbeitet werden, ist beliebig. Vor jeder Ausführung müssen Füllflächen und Hindernisse selektiert sein. Versehentlich selektierte Markierungen oder Symbole werden nicht in die Verarbeitung miteinbezogen. Daher genügt bei diesem Beispiel in den meisten Fällen (Wald ausgenommen) eine Selektierung via <CtrlA>. Der Rahmen muss dabei geschlossen sein, sonst wird der Rahmen gefüllt und alle anderen Objekte werden als Hindernisse betrachtet. Der obige Stand der Verarbeitung kann selbstverständlich noch interakiv verbessert werden. In zu grosse Lücken können Symbole kopiert oder verschoben werden. Für die Nachbearbeitung stehen mehrere Filter-Plugins

zur Verfügung. Ihre Wirkungsweise wird auf der Seite B6 S6 vorgestellt.

In einem zweiten Beispiel werden die Möglichkeiten und Grenzen dieses Programs gezeigt. Die roten Flächen decken um den See die Geröllflächen ab. Jede Ebene (von m12 bis g07) enthält Flächen eines Strukturtyps. Höhenlinien, Textfreistellflächen und Falllinien(grün) gelten als Hindernisse.

Ebene der Füllfläche	Referenzsymbole Anteile in %	Grund- anordnung	Spalten- abstand	Zeilen- abstand	Variat Horizontal	ion in % Vertical	Abständ Symbol	e (mm) zw. Syr Flächenrand	nbol und Hindernis	Wird Füllfläche dargestellt?
m1210	F1, F2, F3, F4, F5 10, 20, 20, 25, 25	orthogonal	1.2 mm	1.2 mm	80	80	0.05	0.0	*1 0.1	Nein
m9	F1, F2, F3, F4, F5 10, 20, 20, 25, 25	orthogonal	0.9	0.9	80	80	0.05	0.0	*1 0.1	Nein
m7	F1, F2, F3, F4, F5 10, 20, 20, 25, 25	orthogonal	0.7	0.7	80	80	0.05	0.0	*1 0.1	Nein
m5	F1, F2, F3, F4, F5 10, 20, 20, 25, 25	orthogonal	0.5	0.5	80	80	0.05	0.0	*1 0.1	Nein
g125	F1, F2, F3, F4, F5, F6 5, 15, 15, 20, 20, 25	orthogonal	1.2	1.2	80	80	0.05	0.0	*1 0.1	Nein
g9	F1, F2, F3, F4, F5, F6 5, 15, 15, 20, 20, 25	orthogonal	0.9	0.9	80	80	0.05	0.0	*1 0.1	Nein
g7	F1, F2, F3, F4, F5, F6 5, 15, 15, 20, 20, 25	orthogonal	0.7	0.7	80	80	0.05	0.0	*1 0.1	Nein

*1: Während der Verarbeitung wird die Strichstärke der Höhenlinien auf 0.0 gesetzt, um die Symbole möglichst nahe an die Linien heranzubringen ohne dass sie zerschnitten werden.

<B6_V2.ai>

Anschliessend erhalten die Höhenlinien wieder ihre ursprünglichen Strichstärken und die Falllinien werden unsichtbar gemacht. Möglicherweise sehen die Geröllfelder konsistenter aus, wenn man die Höhenlinien während der Geröllgenerierung nicht berücksichtigt (nicht selektiert) und ein Anschneiden der Symbole in Kauf nimmt. Wesentlich verbessert würde das obige Ergbnis durch eine professionellere Auswahl der Geröllsymbole, der Füllflächen und der Falllinien.

Zu Nachbesserungen stehen verschiedene Möglichkeiten zur Verfügung: Das Werkzeug Lasso

und anschliessendes Object > Transform > Tranform Each ... :

, das Plugin Filter > Data Harmonization > Select Inside Areas

Select Inside Areas	
Ebene mit den Auswahlflaechen:	Seen (mittel)
Es werden nur die Path- Objekte	selektiert, welche
mindestens mit einem Punkt 💌	innerhalb der Flaechen liegen.
komplett mit dem Zentrum	Cancel OK
mindestens mit einem Punkt	

80%

und anschliessendes <code>Object > Transform > Tranform Each ... :</code>

und das Plugin

 $\label{eq:Filter} {\sf Filter} > {\sf Data Harmonization} > {\sf Keep Selected by Name} \qquad (f4)$

Keep Selected by Name
Nur die Path- Objekte bleiben selektiert, welche im Namen
folgender Text beinhalten: f1
Cancel

und anschliessendes Object > Transform > Tranform Each ... : helfen zur nachträglichen Skalierung von Geröllsymbolen.

Symbole, bestehend aus nur einem Path - Objekt können

 mit
 Filter > Data Harmonization > Select by same Geometry

 oder mit
 Filter > Data Harmonization > Keep Selectet by Name

 selektiert
 Select by Selectet by Name

elect by same Geometry
Alle zum selektierten Path identischen Path- Objekte werden selektiert. Falls diese Paths jeweils Teil einer Gruppe sind, koennen auch die kompletten Gruppen selektiert werden. Die graphischen Attribute werden nicht beruecksichtigt.
Select same paths 🗨
Select same paths
Select complete groups
Cancel OK

und anschliessend mit Filter > Thematic Maps > Place Symbols

Zu beachten ist, dass alle Objekte innerhalb von Ebenen, welche mit den Namen "Markierungen…" oder "THM_SYMBOL…" beginnen, vor einer Verarbeitung durch Place Symbols geschützt sind. Deshalb ist der Ebenennamen abzuändern, z.B.: von "THM_SYMBOL…" zu "xTHM_SYMBOL…".

ersetzt werden. Die ursprünglichen Path - Objekte müssen nochmals, wie oben, selektiert und dann gelöscht werden.

Erst mit den Optionen, welche ein richtungsabhängiges Verändern der Symbolplazierungen flächenhaft und entlang von Linien erlauben, ist ein wesentlicher Schritt zur semi-automatischen Geröllgenerierung getan. Dafür müsste aus diesem Programm ein eigentliches geröllspezifisches Programm abgeleitet werden. Ein weiterer wichtiger Baustein wäre die Bereitstellung der Gerollflächen mit den Gerölldefinitionen. Interaktiv bis automatisch müssten Höhenmodelle, Felsbeschreibungen, Geologie, etc dafür ausgewertet werden!

Seite 8

Beispiel 7: Thematische Karten (THM)

Thematische Karten enthalten Abbildungen statistischer Daten in gut lesbaren grafischen Darstellungen. Dem Thema entsprechend braucht es eine Basiskarte zur Orientierung und eine gute Erklärung der dargestellten Inhalte in Form einer Legende.

Es wird mit dem kleinen Kartenausschnitt aus dem Beispiel 1 < *B7Start.ai*>, der nur die Objekte Gemeindegrenzen, Gemeindeflächen, Seen und Flüsse aufweist, gestartet. Nachdem das Basisbild bereits feststeht, sind die statistischen Daten näher zu betrachten. Als Arbeitsplattform für diese Daten dient MS-Excel. Damit werden Zusammenfassungen und Auszüge getätigt, Formeln hinterlegt, Klassen gebildet, etc..

Der für dieses Beispiel verwendete Datensatz ist sowohl gebietsweise wie auch inhaltlich ein Auszug aus der Verkehrszählung der Jahre 1970, 1980, 1990 und 2000 und beschränkt sich auf die Verkehrswege der arbeitenden Bevölkerung eines Ausschnitts, der Teile von Glarus, St. Gallen und Schwyz umfasst.

Zur automatischen Erzeugung von Diagrammen sollte folgende Gliederung eingehalten werden:

In den ersten Zeilen darf ein erklärender Text (header) stehen. Danach müssen mindesten drei Datenzeilen folgen, damit die Datenzeilen von den Headerzeilen unterschieden werden können.

Die Reihenfolge X- Koordinate (Länge), Y- Koordinate(Breite) und der Spalten, die die statistischen Werte beeinhalten, muss zwingend eingehalten werden. Der Name ist fakultativ und kann in eine beliebige Spalte eingefügt werden. Meistens wird der Namen vor oder nach den Koordinaten positioniert. Alle Spalten sind tabulatorgetrennt bereitzustellen.

	Arbeitende	Glarus.txt																	_ 🗆
	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	B	S
	name	X-Koordinate	Y-Koordinate	ohneVerkMit	OeffVerkehr	MoradAuto	Velo,Mof												
	Reichenburg	716.95	225.237	329	171	146	71	210	197	371	56	261	207	542	59	214	183	801	58
	Bilten	720.1	223.137	243	77	127	76	256	116	279	87	270	226	500	124	128	168	522	62
	Ennenda	724.712	210.65	742	145	195	263	404	129	352	247	374	180	439	332	257	204	535	282
	Filzbach	728.437	220.075	116	11	35	9	167	20	52	13	73	25	87	16	84	31	137	19
	Glarus	723.787	211.3	1778	344	555	296	1427	257	882	302	1138	377	1026	565	782	395	1221	422
	Mollis	724.275	217.187	538	198	262	220	460	157	437	191	383	193	630	303	300	201	799	237
	Muehlehorn	732	220	158	64	31	9	113	26	66	11	83	56	103	5	53	37	111	1
	Naefels	723.325	217.75	785	262	312	405	622	180	637	416	498	277	741	519	333	224	823	378
1) Netstal	722.787	213.775	769	174	187	250	461	173	388	254	336	243	617	266	285	217	701	196
1	Niederurnen	722.537	220.662	760	249	226	390	624	207	433	349	460	269	543	364	362	307	773	258
1	2 Oberurnen	723.012	219.475	330	94	157	208	243	125	301	209	166	179	394	235	104	113	442	148
1	B Obstalden	729.937	219.887	90	23	30	12	85	24	56	4	61	20	91	5	35	20	128	3
1	Riedern	722.487	212.237	169	18	97	58	118	19	136	55	71	27	190	55	43	45	197	28
1	5 Amden	729.675	223.4	386	30	59	15	262	43	84	14	257	54	201	25	194	77	320	24
1	S Schaenis	721.9	224.512	509	245	135	140	417	165	340	137	415	267	620	156	286	296	836	161
1	7 Weesen	726.2	222.3	211	111	116	58	144	97	168	45	146	97	293	60	134	84	348	33
					19	970			1	980			19	990			20	000	

Wir beschränken uns auf die arbeitende Bevölkerung der Verkehrszählung:

Um Verwechslungen mit Daten anderer Herkunft zu vermeiden, nennen wir die Extension *.txt in *.thm um und lesen dieses File via 'place' ein. Dabei wird lediglich eine Speicherung in einem von

Illustrator verwalteten Speicherbereich ausgeführt. Es findet keine geometrische Abbildung statt.

Erfolgreiche Importe werden kommentarlos durchgeführt. Fehler in den Daten werden gemeldet. Leider zeigen sich die Illustrator Plugins wenig flexibel, so sind Dialoge oder Listen unter der Funktion *place/platzieren* nach dessen Ausführung nur umständlich möglich.

4006 in der Meldung *Datenfehler* sagt aus, dass mit dem 4. numerische Wert (incl. Koordinaten) in der 6. Zeile des Datensatzes etwas nicht stimmt. Mehr kann man via *File öffnen* und *Message* erfahren. Eigentlich sind mit dem fehlerhaften **1xxx778** zwei Fehlersituationen entstanden:

Glarus und 1xxx778 sind zwei Namen und damit hat diese Zeile einen numerischen Wert zu wenig.

File name:	ArbeitendeGlarus.thr	ı	•	Place
Files of type:	Tab separated Excel	text file (*.THM)	•	Cancel
Datenfehler				
4006				
<oeffne <oper<br="" mit="">Fehler wird dann u ersichtlich!</oeffne>	n File xxx.thm> inter <messages></messages>			
		ОК		

Window > KAR Dialogs > Show Message Dialog

<u> </u>					
Einpassen: Messages Selected 💽					
Update Messages					
1 Plugin THM: Read Statistic Dat					
Messages					
Es ist ein gravierender Fehler aufgetreten!					
Die 6.te Zeile enthaelt eine vom Format					
abweichende Anzahl numerischer Werte,					
17 anstelle von 18!					
Glarusl723.787l211.3l1 xxx 778l344l555l2					

Die Diagrammabbildung wird mittels eines Filters vorgenommen. Weil Filter ursprünglich nur für das Verarbeiten von selektierten Objekten gedacht waren, muss irgend ein Objekt selektiert sein, damit ein (erster) Zugriff auf einen Filter möglich ist. Das selektierte Objekt bleibt unverändert.

Zunächst versuchen wir die Diagramme provisorisch in das Basisbild einzupassen. Dafür genügt z.B. der einfache Diagrammtyp Sektordiagramm. Die einzelnen Eingaben haben folgende Reihenfolge:

- Kartenmassstab: 1 : 200000
- Natürliche Einheiten zu Bildeinheiten: Im Excel File haben wir Kilometer und im Dokument sind Millimeter festgelegt, also km / mm = 1 000 000
- Einpassen in das Zentrum des Dokuments: Die Bestimmung des Abstandes zwischen dem Nullpunkt des Dokuments und dem des Projektionsnullpunktes ist mühsam. Einfacher sind zwei Methoden mit Hilfe des Buttons Einpassen. Die Diagramme werden unter der Verwendung der Abbildungsparameter in das Zentrum des Dokuments plaziert. Entweder werden anhand der erzeugten Diagramme die notwendige Verschiebung ausgemessen und die Diagramme mit korrigiertem Abstand neu plaziert oder die Diagramme werden gesamthaft auf die geeignete Position verschoben und die selektierten Diagramme werden mit File > Export... > Tab separated Excel text file (*.THM) in ein neues Excel File zurückgeschrieben. Nachdem das neue File mit place neu geladen wurde, werden neu generierte Diagramme an die neuen Positionen gesetzt.
- Abbildungsfaktor = Radius^{*1}/ Quadratwurzel aus Gesamtmenge^{*1}
- In diesem Beispiel wurde 0.1 festgelegt.
- Proportionalität: Sektordiagramme werden flächenproportional abgebildet, daher = 2
 Strichstärken in mm
- Die Dicke der Kreiskontur wird der Grösse des Sektordiagramms angepasst.
- Die Beschriftung wird für eine bessere Orientierung eingeschaltet.
- Mit der in der Farbzuordnung definierten Farbe wird gestartet.

Alle Parameter bleiben nach einer erfolgreichen Diagrammerzeugung bis zum Schliessen des Dokuments erhalten. Nach einem Neustart von Illustrator können mit dem Button Import die zuletzt verwendeten Parameter aus dem Dokument zurückgeholt werden.

Default ist eine Standardvoreinstellung.

Nach dem OK erscheint ein Dialog, der diagrammtypische Optionen bezüglich Darstellung (Generalisierung, Anordnung der Diagrammelemente, etc.) bereit hält. Cancel löscht alle Neueingaben.

*¹ des grössten Ortes

*² verkleinert dargestellt

Diagramme
Im Dokument bereits festgehaltenen Argumente importileren oder Default-Werte einstellen: Default Abbildung Kartermasstab: 1: [200000 Natuerliche Koordinaten zu Bildkoordinaten (m zu mm + 1000): [1000000
Einpassen auf das Zenthrum des Dokuments Einpassen Abstand zum Nullpunkt des Dokuments X: -3517.38 mm Y: -941.22 mm
Diagrammtyp: Sektordiagramm 💌 Abbildungsfaktor: 0.1 Proportionalitaet 2 1: Inear 2: aur Fleiche
Strichstaerken, Konturen
maximal: 0.2 mm minimal: 0.1 mm Unterteilungslinien: 0.08 mm
Rotation: 0
Schwellwerte in Mengenwerte (oder in mm) Verfuegbare Farben: 25% Blue C+25 M+12.5
Beschriftung? Cancel OK

Nach diesem ersten Test wird noch nach einer geigneteren Diagrammform gesucht. Wir haben vier Zählungen mit je vier Werten. Da bieten sich entweder unterteilte Flügel oder unterteilte Stäbe an. Unterteilte Flügel werden flächenproportional dargestellt.

Wenn wir für den grössten Ort, Glarus, mit ca. 3000 Arbeitenden, einen Radius von 15mm festlegen, resultiert ein Abbildungsmassstab von 15mm / Quadratwurzel von 3000 = 0.27. Obstalden, der Ort mit den wenigsten Arbeitenden, würde einen Radius = 0.27 * Quadratwurzel von 150 = 3.3 mm erhalten. Wir wählen als Diagrammtyp Unterteilte Flügel aus und setzen den Abbildungsfaktor auf 0.27. Nach dem OK erscheint ein diagrammspezifischer Dialog:

unterteilte Fluegel				
Anzahl Fluegel:	4	Anzahi Se	ktoren pro Fluegel:	4
Max. Fluegelabstand:	1.5 mm	minimaler	Abstand:	0.5 mm
Zuordnung der Farben:	fluegelweise	×		
Schwellwerte:				
fuer die Darstellung eine	es Fluegels:	0 mm	bezieht sich auf der	n Radius
fuer die Unterteilung in :	Sektoren:	0 mm	bezieht sich auf der	n Radius
fuer die Darstellung eine	es Einzelwertes:	0 mm	bezieht sich auf die	e Sektorsehne
			Cancel	ОК

Die Flügel können zueinander grössenabhängige Abstände erhalten.

Die Zuordnung der Farben kann flügelweise oder diagrammweise vorgenommen werden.

Auf eine Generalisierung wird vorerst verzichtet.

Die einzelnen Diagramme (Gruppen) werden auf geeignetere Positionen verschoben. Mit dem Direktauswahlwerkzeug verschieben wir die verkleinerten Namen und beginnen die Legende aufzubauen. Der jetzige Stand der Karte gibt eine Übersicht, was mit diesem Diagrammtyp möglich ist. Vielleicht sollte man die Diagramme kleiner abbilden. Sicher sollte noch die Plazierung optimiert, sowie die Legende vervollständigt werden. Der Karte ist noch ein treffender Titel anzufügen.

Neben der Darstellung des Diagrammtyps Unterteilte Flügel bietet sich im weiteren noch der Diagrammtyp Unterteilte Stäbe für die vorliegende Datengrundlage an.

Die jetzigen Diagrammpositionen und die Grafik werden gesichert mit:

File > Export... > Fluegel.thm File > Save As > Fluegel.ai

Bei einem Neubeginn werden die zuletzt gesicherten Daten wieder geladen:

File > Open > uFluegel.ai File > Place > uFluegel.THM

Die Ebene *THM diagrams* wird zusammen mit den darin enthaltenen Objekten gelöscht. Nach einem erneuten Aufruf von

Filter > Thematic > Diagrams

erhält man mit Importieren die früher benützten Parameter.

Stabreihen, unterteilte Stäbe werden linear dargestellt, also mit Proportionalität = 1. Die Stabhöhe errechnet sich aus dem Mengenwert mal Abbildungsfaktor. Wenn Glarus ungefähr 30 mm hohe Stäbe erhalten soll, beträgt der Abbildungsfaktor 30 / 3000 = 0.01. Obstalden bekommt mit diesem Faktor 0.01 * 150 = 1.5mm hohe Stäbe. Im diagrammspezifischen Dialog werden

- Stabaufteilung(4 *mal* 4)
- Stabbreite (2mm)
- Ausrichtung (mitte der Basis als Referenz)
- Zuordnung der Farben (stabweise)
- Es könnte auch gruppenweise oder diagrammweise eingefärbt werden.

Die Einteilung in Gruppen, z.B. Zusammenfassung von zwei Zählungen, ist hier nicht sinnvoll. Gruppen würden durch einen zusätzlichen Abstand gebildet werden. Mit einer Basislinie können Diagramme auch bei wegfallenden Stäben (< erster Schwellwert) zusammengehalten werden.

Die obigen Parameter zusammen mit den Plazierungskoordinaten der *unterteilten Fluegel* ergeben einen ersten Entwurf.

Mit wenigen Manipulationen erhält man schon eine wesentliche Verbesserung:

- Schriftgrösse = 9
- Replazieren der Legende
- Entfernen des Legendenwertes 3000
- Ergänzen der Legende durch Kopieren, vertikal Skalieren und Beschriften eines Diagrammes.
- Verschieben einzelner Diagramme
- Verschieben der Diagrammnamen (*Direktauswahlwerk- zeug*)

Dieser Datensatz ist sowohl für ortogonale (lineare), wie auch für polare (flächenproportionale) Diagrammformen anwendbar. Der Grund liegt in der Streuung, grösste Teilmenge durch kleinste Teilmenge (3000 / 150 = 20). Bei einer Streuung > 100 wäre eine lineare Abbildung nicht mehr sinnvoll.

Bevor die definitive kartografische Ausgestaltung vorgenommen wird, sichert man wieder die Grafik (*.ai) und die neuen Diagrammpositionen (*.thm).

Einfärben von Flächen für Choroplethenkarten

Die für die Farbzuordnung notwendigen Klassenwerte werden entweder via Excel aufbereitet oder mit grafischen Methoden, wie zum Schluss dieses Beispiels in Kombination mit dem Dreiecksdiagramm gezeigt, konstruiert. Die Daten werden wie bei der Diagrammerzeugung angeordnet.

Zur Vorbereitung löschen wir wieder die Ebene THM diagrams oder falls wir neu beginnen, laden wir

File > Open > B7Start_Einfaerben.ai und die Klassenwerte File > Place > Klassen.thm

Nach dem Selektieren der Gemeindeflächen starten wir das Einfärben mit

Filter > Thematic Maps > Diagrams.

Ausser den Schaltflächen Einpassen und Import beim koordinatenorientierten Einfärben, sind nur noch die Auswahlfelder *Verfuegbare Farben* und der Diagrammtyp = *Einfaerben von Flaechen* von Bedeutung.

Bei der Farbzuordnung via Koordinaten ist Sorge zu tragen, dass die Koordinatenpaare innerhalb der einzufärbenden Flächen liegen!

Bei der Zuordnung per Namen sind die Koordinaten bedeutungslos. Die Namen der Flächen in der Grafik müssen exakt mit den Namen im *.thm -File übereinstimmen.

Die Farben sollten vorher bestimmt und sinnvoll benannt werden. Falls Globale Farben oder Volltonfarben zur Anwendung kommen, können die Farbwerte leicht geändert werden. Bei nicht globalen Prozessfarben müssen die Änderungen objektweise vorgenommen werden und sind daher um Vieles mühsamer.

	A	В	С	D
1	717.185181	238.59549	Reichenburg	4
2	720.335144	236.495499	Bilten	2
3	724.947083	224.008484	Ennenda	2
4	728.672119	233.433502	Filzbach	1
5	724.022156	224.658493	Glarus	1
6	724.510193	230.545471	Mollis	4

Beispiel 7 Seite 5

Dreiecksdiagramme

Für Datensätzen mit drei statistische Werten eignen sich Dreiecksdiagramme zur Bildung von Klassen.

File > Open > B7Start.ai File > Place > DreiWegarten.thm

In einer freien Fläche wird ein beliebiges Path als Platzhalter für ein Filter- Aufruf selektiert bereitgehalten. Mit dem untenstehenden Dialog wird dieses Objekt durch ein Dreieck ersetzt.

Filter > Thematic Maps > Create Triangle

In das selektierte Dreieck werden mit

Filter > Thematic Maps > Diagrams

die ausgewählten Symbole abgebildet (Kreis). Von Bedeutung sind nur die Parameter Importieren, Einpassen und Klassenbildung im Dreieck. Aus internen Gründen muss unbedingt die Folge Symbole erzeugen > OK eingehalten werden. Zusammen mit den Symbolen wird noch eine Ebene *THM triangle areas* erzeugt. Der Anwender plaziert in dieser Ebene die Zuteilungsflächen entsprechend seiner thematischen Vorgaben. Die Symbole sind in diesem Beispiel alle in der rechten Ecke plaziert, das bedeutet, viel privater Verkehr. Einfachheitshalber begnügen wir uns mit vier Klassen:

- Überdurchschnittlich zu Fuss
- > 25% Anteil, hellgrün
- Überdurschnittlicher öffentlicher Verkehr
- > 15%, hellblau
- Überdurschnittlicher privater Verkehr
- > 65%, hellrot
- Rest rosa

Falls die Flächen zu ungenau digitalisiert wurden, kann dies mit Filter > Data Harmonisation > Snap Points korrigiert werden. Es ist darauf zu achten, dass nur die Ebenen *THM triangle areas* und *THM triangle* selektiert sind.

Beispiel 7 Seite 7

Möglicherweise sind nicht alle Zuordnungsflächen wirklich geschlossen. Ersichtlich mittels: Window > KAR Dialogs > Show Inform Dialog >> Selected Die selektierten und offenen *THM triangle areas* werden mit nebenstehenden Plugin geschlossen. Die geschlossenen Path bleiben unverändert.

Mit Klassenbildung im Dreieck >

Symbole zuordnen > **OK** findet im Speicher die Zuordnung zu Klassen statt. Aktuell sind jedoch immer noch die drei Absolutwerte.

Erst nach **Klassenbildung im Dreieck** > **Klassenwerte speichern** > **OK** werden die drei Absolutwerte je durch einen Klassenwert ersetzt. Weil die Gemeindeflächen keine Namen besitzen, werden wir die Koordinaten für die Farbzuweisung benützen.

Falls ein Einpassen in die Gemeindeflächen notwendig wird, erzeugt man aus den Klassenwerten Diagramme und korrigiert, wie in B7 S2 beschrieben, die Koordinaten via Verschieben, Export und Place (*.thm).

Eingefärbt wird wie in B7 S5 beschrieben.

Filter > Data Harmonisation > Close Path Objects

Close Path Objects	
Path Objekte werden geschlossen, entweder durch Ergaenzen mit einem zusaetzlichen Segment oder durch das Ausmitteln der Endpunkte:	Ausmitteln
Snapweite in mm:	0.2 mm
	Cancel OK

	A	В	С	D
1	717.185181	238.59549	Reichenburg	4
2	720.335144	236.495499	Bilten	2
3	724.947083	224.008484	Ennenda	2
4	728.672119	233.433502	Filzbach	1
5	724.022156	224.658493	Glarus	1
6	724.510193	230.545471	Mollis	4

Zusammen mit den Stäben:

In diesem Beispiel wurden zuerst Diagramme erzeugt und dann erst die Flächen eingefärbt. In der Praxis wird eher umgekehrt verfahren.

Regionalisieren

Via '*Place*' geladene statistische Daten werden mittels Flächen einer selektierten Ebene zusammengefasst. Ortspositionen sollten nicht innerhalb mehrerer Flächen zu liegen kommen.

Ist dies der Fall, werden sie jeweils der letzten Fläche in der Reihenfolge zugeordnet.

Ortspositionen welche sich in keiner Regionalisierungsfläche befinden, verbleiben unverändert. Flächen mit nur einem Ort verursachen ebenfalls keine Veränderung. Resultierende Orte werden mit den Koordinaten des mengenmässig grössten Teilorts versehen.

Der Kanton Glarus wird in diesem Beispiel durch die Koordinaten der Gemeinde Glarus vertreten.

Selbstverständlich können auch exaktere Flächen, z.B. Bezirksflächen, zur Regionalisierung herangezogen werden. Die Sicherung der resultierenden Daten erfolgt via '*Export*' der selektierten Diagramme.

Die Diagramme der ursprünglichen Daten (Gemeinden) sind nicht zwingend notwendig, wenn die Abbildungsparameter sicher stimmen. Ihre Erzeugung hilft jedoch Fehler zu vermeiden.

Beispiel 8: Symbole und Diagramme (THM)

Alle von THM unterstützten Diagrammformen können vereinfacht (generalisiert) werden. Schwellwerte steuern das Unterdrücken oder das Vereinfachen zu kleiner Diagramme.

Beim THM des Illustrator CS2 wird abgefragt, ob Positionen mit zu kleinen Diagrammen leer bleiben oder an Stelle von einem Diagramm ein Einheitssymbol plaziert werden soll. Orthogonale Diagramme werden durch ein Quadrat und polare Diagramme durch ein Kreis ersetzt.

Der Durchmesser, resp. die Kantenlänge des Ersatzsymbols wird auf zwei drittel des wirksamen Schwellwertes festgelegt. Lediglich Kreissektordiagramme erhalten ein vom Benützer festgelegten Kreisradiusadius.

Flügeldiagramme haben andere Vereinfachungsregeln und erhalten keine einheitlichen Kreise.

Die Diagramme von B7 S4, halb so hoch dargestellt, führen mit der unten gezeigten Vereinfachung zu den vier Einheitsquadraten.

Schwellwerte:		
fuer die Darstellung eines Stabes:	2 mm	bezieht sich auf die Stabhoehe
fuer die Unterteilung in Schichten:	4 mm	bezieht sich auf die Stabhoehe
fuer die Darstellung eines Einzelwertes:	0.5 mm	bezieht sich auf die Schichtdicke
🔽 Sollen entfallende Diagramme durch ein	Ersatzsymbol (Q	uadrat) ersetzt werden?

Entweder werden diese Quadrate akzeptiert oder man will sie durch Symbole ersetzen.

Diese in Grösse und Form identischen Konturen können in diesem Beispiel noch interaktiv selektiert werden. Bei einer Karte mit den Gemeinden der Schweiz kommen jedoch leicht hunderte von solchen Quadraten zusammen. Mit dem Programm:

Filter > Data Harmonization > Select by same Geometry (B6 S7) Select by same Geometry

können die Path- Objekte dieser Einheitsdiagramme (□) automatisch selektiert und anschliessend mit Filter > Thematic Maps > Place Symbols (B6 S7) vordefinierte Symbole 🚑 auf diese Path plaziert werden.

place Symbols		
Im Layer THM_SYMBOL_REFERI SYMBOL_20) koennen selektiert Falls weder THM_SYMBOL_REF wird der Layer zusammen mit ein Zwischen dieser Symbolorganise Zusammenhangl	ENCES enthaltene Gruppen (SYMB) e Path's ersetzen. ERENCES noch Symbolgruppen en nem Default- Symbol(kreis) gener ation und den Illustrator- Symbols	OL_1 bis kistieren, iert. besteht keinen
Verfuegbare Symbole:	SYMBOL_3	-
Plazierung der Symbole auf	die Zentren die Zentren die Startpunkte	

Achtung, unter diesen Symbolen sind die ursprünglichen Einheitsdiagramme noch erhalten. Die Definition der Symbole ist in B6 S1 ausführlich beschrieben.

Schwellwerte:		
fuer die Darstellung eines Diagramms:	1 mm	bezieht sich auf den Radius
fuer die Unterteilung in Sektoren:	2 mm	bezieht sich auf den Radius
fuer die Darstellung eines Einzelwertes:	0.7	bezieht sich auf die Sektorsehne
Sollen entfallende Diagramme durch	n einen Einheit	skreis ersetzt werden?
Radius fur den Einheitskreis:	0.5 mm	_

Symbole als Diagramme

Symbole können in zwei Varianten via dem Programm: Filter > Thematic Maps > Diagrams erzeugt werden, sowohl als klassenabhängige Symboltypen, wie auch als skalierte Symbole.

Die Klassenwerte werden wie in B7 S5 eingelesen. In der Ebene *THM_SYMBOL_REFERENCES* bereitstehende Symbole (B6 S1) werden in der Reihenfolge ihrer Ablage auf die Ortspositionen abgebildet und unter *THM diagrams* abgelegt (nicht unter *THM_SYMBOL_OCCURRENCES*, da sie ja keine Symbole mehr sind).

Die nicht benötigten Eingabefelder sind rot abgedeckt. Ausser den Abbildungsparametern ist lediglich noch die Beschriftung festzulegen.

Im diagrammspezifischen Dialog werden keine weiteren Eingaben gebraucht. Die Strichstärken werden mitskaliert.

Bei skalierten Symbolen, also bei einer figürlichen Darstellung, ist zu den oben geltenden Parameter noch die Proportionalität wirksam. Es können also auch sphärische Abbildungen, wie zum Beispiel Kugel, Würfel, getätigt werden. Die Auswahl eines Symbols findet in einem diagrammspezifischen Dialog statt. Falls keine Symbole definiert sind, wird ein Default- Symbol generiert (B6 S1).

Skalierung von Symbolen			
Gruppen im Layer THM_SYMB Falls weder THM_SYMBOL_REI wird der Layer zusammen mit e	OL_REFERENCES koennen a FERENCES noch Symbolgrup inem Default- Symbol(kreis	als Symbole verwendet werden. ipen erxistieren,) generiert.	
Zwischen dieser Symbolorganisation und den Illustrator- Symbols besteht kein Zusammenhang!			
Verfuegbare Symbole:	SYMBOL_1		
Sollen Strichstarken ebenfalls skaliert weden?			
Schwellwerte:			
Minimale Symbolhoehe:	3 mm		
Minimale Symbolbreite:	3	Cancel OK	

9	THM diagrams	0
9		0
•	👂 🂽 Obstbaeume Niederstamm	0
•	Obstbaeume Hochstamm	0
•	Nadelwald	0
•	👂 🚺 Laubwald	0
•	👂 🦳 Gebuesch	0
9	Rebstoecke	0
•	👂 📥 Sumpf	0
•	SYMBOL_1	0

<B8Start_V1.ai>

Beispiel 9: Flächen aus Punktwolken

Wertneutrale Punkte, dargestellt durch Kreise oder Quadrate, werden anhand ihrer Abstände zueinander zu Flächen zusammengefasst. Mit verschiedenen Distanzkriterien können verschiedene Punktdichten dargestellt werden.

Seite 1

Siedlungsflächen

Gleich wie bei den vorherigen Punktwolken, wird hier die Nachbarschaft der Gebäude untersucht. In diesem Beispiel wird angenommen, dass für eine Siedlungsfläche mindesten zehn Gebäude notwendig sind. Die Siedlungsflächen koennen nach drei verschiedenen Methoden ermittelt werden:

- punktförmig, die Gebäude erhalten einen Zentrumspunkt.

Die Ausdehnungen der Gebäude werden nicht beachtet.

- Umrisse (bounding boxes) der Gebäude werden geprüft.

Objekttyp, Punkte oder Flächen:	Flächen, Umrisse (Gebäude, et	tc) 💌
Maximale Distanz benachbarter Punkte (mm):		1.8 mm

Da hier die Ausdehnung der einzelnen Gebäude berücksichtigt wird, muss die Prüfdistanz verkleinert werden, von 3 auf 1.8 mm, damit ein vergleichbares Ergebnis erzielt wird.

- Die exakten Flächen der Gebäude werden berücksichtigt.

Objekttyp, Punkte oder Flächen:	Flächen, exakt (Gebäude, etc	.) 💌
Maximale Distanz benachbarter Pun	kte (mm):	1.8 mm
Ab wieviel Punkte(>=1) soll eine Flä	che gebildet werden?	10
Stützpunktdichte der resultierenden	Flächen: gering	•

Mit den Parameter Stützpunktdichte, Interpolation und Glättung kann die geeignete Flächenstruktur eingestellt werden. Die Aussparungen in diesem Beispiel sind wahrscheinlich zu vernachlässigen. Die Laufzeiten betrugen 3,8 und10 Sekunden.

Gebäude rektifizieren und an Referenzgeraden angleichen

Alle Segmente eins Gebäudes werden geprüft inwieweit ihre Winkel modulo 90 voneinander abweichen. Segmente deren Winkel innerhalb +- Abweichung (15 Grad) liegen, werden auf einen Mittelwert gesetzt. Die Schnittpunkte (Gebäudeecken) werden neu berechnet..

Filter > Datea Harmonization > Rectify closed path

Geschlossene Path- Objkte rechtwinklig ausrichten		
Maximal berücksichtigte Abweichung in Altgrad:	15	
🔲 Orientieren der rektifizierten Gebäude nach einer Referenzgerade		
🔲 Positionieren zur Referenzgerade mit dem Abstand:	0 mm	
Die Referenzgerade besteht entweder aus einem selektierten Teil- stück eines offenen Pathobjekts oder aus einem zwei Punkte- Path. Die Gebäude dürfen durch die Referenzgerade nicht geschnitten werden!		
Cancel	ОК	

Die rektifizierten Objekte können auf eine Referenzgerade orientiert und mit einem konstanten Abstand ausgerichtet werden. Dies kann nacheinander oder bei einfachen Situationen mit nur einer Ausführung des Plugins vorgenommen werden.

<B10Start_V2.ai> enthält fünf Referenzgeraden und muss daher in mindestens sechs Schritten bearbeitet werden. Zuerst werden alle Gebäude rektifiziert, damit auch die, welche keinen Bezug auf eine Referenzgerade haben, rechtwinklig werden. Dann werden Referenzgerade für Referenzgerade die geeigneten Gebäude verarbeitet. Für das Selektieren eignet sich am besten das Lasso- Werkzeug. Der Schwellwert Abweichung und der Abstand zur jeweiligen Referenzgerade muss von Fall zu Fall angepasst werden.

interaktiv bearbeitet werden.

Gebäude zu Rechtecke, Eckgebäude oder Reihen zusammenfassen

Alle Segmente der selektierten Gebäude werden geprüft inwieweit ihre Winkel modulo 90 Grad voneinander abweichen. Die überwiegende Ausrichtung (Vorzugsrichtung) wird auf das oder die resultierenden Objekte übertragen. Es findet keine Ausmittelung aller vorkommenden Winkel statt.

Filter > Data Harmonization > Generalize Buildings

Der Anpassungsfaktor entspricht einer Skalierung und wird je nach Generalisierung gesetzt. Werden viele Gebäude zusammengefasst genügt meistens eine *kleine* Auflösung zur Berechnung. Eine *hohe* oder *mittlere* Auflösung kann bei der Zusammenfassung weniger Gebäude erforderlich sein. Eine *hohe* Auflösung, d. h. ein feinmaschiges Hilfsgitter, verursacht eine längere Ausführungszeit. Mit dem Lasso wird Gebäudegruppe für Gebäudegruppe selektiert und dann verarbeitet.

<B9Start_V4.ai>

Beispiel 10: Angleichen von Symbolen an offene Path

Symbole (z.B. Bahnstationen) werden an offene Paths (Bahnen) tangential angeglichen. Die ursprünglichen Positionen werden von geschlossenen Path- Objekten (Kreise, Vierecke) stellvertreten. Diese wurden digitalisiert oder via Place (.thm) eingelesen und dann als (Diagramm-) Symbole erzeugt. Sofern diese Stellvertreter nicht exakt auf den Path- Objekten liegen werden die Positionen wärend der Angleichung innerhalb einer Snapweite korrigiert.

Filter > Thematic Maps > Adjust Symbols	5	
Tangentiales Ausrichten von Symbolen auf Path- Objekte		
Zwischen der hier verwendeten Symbolorganisation und den Illustrator- Symbolen besteht kein Zusammenhang!		
THM- Symbole werden in der Ebene <thm_s bereitgehalten. Verfügbare Symbole:</thm_s 	YMBOL_REFERENCES> als Gruppen BOL_1	
Maximale Distanz zum nächsten Path (Bahnlin	ie) [mm]? 0.5 mm	
Toleranz zu Bezier- Kurven [mm]?	0.01 mm	
	Cancel OK	

Wenn keine Symbole definiert sind oder der Ordner <THM_Symbol_References> nicht existiert, wird dieser Ordner vom Plugin angelegt und ein Default- Symbol <Symbol_1> erzeugt

Die Plazierung auf Bezier- Kurven wird nicht exakt berechnet, sondern linear angenähert. Der Grad der Annäherung wird mit der *Toleranz zu Bezier- Kurven* vorgegeben. Auf Verzweigungen, resp. Kreuzungen werden die Symbole mit dem Orientierungswinkel null Grad selektiert gesetzt. Sie können anschliessend interaktiv spezifisch orientiert werden. Mit einer Zuordnung in die Ebenen Hauptund Nebenbahnen und einer ebenenweise Verarbeitung, kann dieses Problem eleganter gelöst werden. Ausserhalb der Snapweite liegende Stellvertreter bleiben für eine Nachbearbeitung selektiert und werden durch keine Symbole ersetzt.

